A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

Overview

A Benchmark for Rough Sketch Cleanup

This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

This code computes the metrics described in the paper and generates the benchmark website to compare the output of various sketch cleanup algorithms.

The Directory Structure

Data directories are defined in the file cfg.yaml:

  • dataset_dir: User puts the dataset here. Needed by the website.
  • alg_dir: User puts automatic results here. Needed by the website.
  • web_dir: We generate the website here. Image paths look like ../{alg_dir}/rest/of/path.svg
  • table_dir: We generate the metrics computed by the benchmark here. Needed to generate the website, but not needed when hosting the website. (A precomputed version for algorithms we tested is provided below.)
  • test_dir: We generate resized image files for testing algorithms here. Needed also when computing metrics. Not needed by the website. (A precomputed version is provided below.)

The default values are

dataset_dir: './data/Benchmark_Dataset
alg_dir: './data/Automatic_Results'
web_dir: './data/web'
table_dir: './data/Evaluation_Data'
test_dir: './data/Benchmark_Testset'

If you are generating your own test_dir data, you need Inkscape and ImageMagick. run_benchmark.py tries to find them according to your OS. You can set the paths directly in cfg.yaml by changing inkscape_path and magick_path to point to Inkscape and ImageMagick's convert executable, respectively.

Installing Code Dependencies

Clone or download this repository. The code is written in Python. It depends on the following modules: aabbtree, CairoSVG, cssutils, matplotlib, numpy, opencv-python, pandas, Pillow, PyYAML, scipy, svglib, svgpathtools, tqdm

You can install these modules with:

pip3 install -r requirements.txt

or, for a more reproducible environment, use Poetry (brew install poetry or pip install poetry):

poetry install --no-root
poetry shell

or Pipenv (pip install pipenv):

pipenv install
pipenv shell

The shell command turns on the virtual environment. It should be run once before running the scripts.

If you are not downloading the precomputed test images, make sure the following external software has been installed in your system:

  1. Inkscape 1.x. Please install an up-to-date Inkscape. Versions prior to 1.0 have incompatible command line parameters. brew cask install inkscape or apt-get install inkscape.
  2. ImageMagick. brew install imagemagick or apt-get install imagemagick.

The Dataset and Precomputed Output

You can download the sketch dataset, precomputed algorithmic output, and computed metrics here: Benchmark_Dataset.zip (900 MB), Automatic_Results.zip (440 MB), Evaluation_Data.zip (20 MB). Unzip them in ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Dataset.zip
unzip Automatic_Results.zip
unzip Evaluation_Data.zip

Note that the vectorized data has been normalized to have uniform line width. It was too tedious for artists to match line widths with the underlying image, so we did not require them to do so and then normalized the data.

Running

Generating or Downloading the Testset

(If you are trying to regenerate the website from the paper using the precomputed output and already computed metrics, you do not need the Testset. If you want to change anything except the website itself, you need it.)

The Testset consists of files derived from the dataset: rasterized versions of vector images and downsized images. You can regenerate it (see below) or download Benchmark_Testset.zip (780 MB) and extract it into ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Testset.zip

You can regenerate the Testset (necessary if you change the dataset itself) by running the following commands:

python3 run_benchmark.py --normalize   # generate normalized versions of SVGs
python3 run_benchmark.py --generate-test # generate rasterized versions of Dataset, at different resolutions

This will scan dataset_dir and test_dir, generate missing normalized and rasterized images as needed. It takes approximately 20 to 30 minutes to generate the entire Testset.

Adding Algorithms to the Benchmark

Run your algorithm on all images in the Testset. If your algorithm takes raster input, run on all images in ./data/Benchmark_Testset/rough/pixel. If your algorithm takes vector input, run on all images in ./data/Benchmark_Testset/rough/vector. For each input, save the corresponding output image as a file with the same name in the directory: ./data/Automatic_Results/{name_of_your_method}{input_type}/{parameter}/

The algorithm folder name must contain two parts: name_of_your_method with an input_type suffix. The input_type suffix must be either -png or -svg. The parameter subdirectory can be any string; the string none is replaced with the empty string when generating the website. Folders beginning with a . are ignored. For examples, see the precomputed algorithmic output in ./Automatic_Results. and evaluation result in ./Evaluation_Data already.

If your algorithm runs via alg path/to/input.svg path/to/output.png, here are two example commands to run your algorithm in batch on the entire benchmark. Via find and parallel

find ./data/Benchmark_Testset/rough/pixel -name '*.png' -print0 | parallel -0 alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Via fd:

fd ./data/Benchmark_Testset/rough/pixel -e png -x alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Computing the Metrics

Run the evaluation with the command:

python3 run_benchmark.py --evaluation

This command creates CSV files in ./data/Evaluation_Data. It will not overwrite existing CSV files. If you downloaded the precomputed data, remove a file to regenerate it.

Generating the Website to View Evaluation Results

After you have called the evaluation step above to compute the metrics, generate the website with the command:

python3 run_benchmark.py --website

You must also generate thumbnails once with the command:

python3 run_benchmark.py --thumbs

Internally, the --thumbs command creates a shell that calls find, convert, and parallel.

To view the website, open the help.html or index.html inside the web_dir manually or else call:

python3 run_benchmark.py --show

The website visualizes all algorithms' output and plots the metrics.

Putting It All Together

If you don't want to call each step separately, simply call:

python3 run_benchmark.py --all

Computing Metrics on a Single Sketch

Similarity Metrics

To run the similarity metrics manually, use tools/metric_multiple.py. To get help, run:

python3 tools/metric_multiple.py --help

To compare two files:

python3 tools/metric_multiple.py -gt "example/simple-single-dot.png" -i "example/simple-single-dot-horizontal1.png" -d 0 --f-measure --chamfer --hausdorff

Vector Metrics

To evaluate junction quality:

python3 tools/junction_quality.py --help

To compute arc length statistics:

python3 tools/svg_arclengths_statistics.py --help

Rasterization

If you need to convert a file from an SVG to a PNG, you can do it specifying the output filename:

inkscape my_file.svg --export-filename="output-WIDTH.png" --export-width=WIDTH --export-height=HEIGHT

or specifying the output type (the input filename's extension is replaced):

inkscape my_file.svg --export-type=png --export-width=WIDTH --export-height=HEIGHT

The shorthand versions of the above rasterization commands are:

inkscape -o output-WIDTH.png -w WIDTH -h HEIGHT my_file.svg

or

inkscape --export-type=png -w WIDTH -h HEIGHT my_file.svg

If you pass only one of width or height, the other is chosen automatically in a manner preserving the aspect ratio.

Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022