Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Overview

Maths from examples - Learning advanced mathematical computations from examples

This is the source code and data sets relevant to the paper Learning advanced mathematical computations from examples, by Amaury hayat, François Charton and Guillaume Lample, published by ICLR 2021.

We provide code for

  • data generation
  • model training
  • model evaluation

We also provide

  • 7 datasets
  • 7 pretrained models

Dependencies

  • Python (3.8+)
  • Numpy (1.16.4+)
  • Sympy (1.4+)
  • Pytorch (1.7.1+)
  • Control library (0.8.4, from conda-forge)
  • CUDA (i.e. a NVIDIA chip) if you intend to use a GPU
  • Apex for half-precision training

Important notes

Learning with and without GPU

All the code can run on CPU only (set parameter --cpu to true). Data generation is to be done on CPU only. Model training and model evaluation can be done on CPU, but training will be extremely slow. To train or evaluate with a GPU, you need a CUDA-enabled GPU (i.e. a NVIDIA chip).

We support:

  • Half-Precision (with NVIDIA Apex library): set parameters --fp16 true --amp 2, to disable, set --fp16 false --amp -1
  • Multi-GPU training: to run an experiment with several GPU on a unique machine, use
export NGPU=8; python -m torch.distributed.launch --nproc_per_node=$NGPU train.py  # parameters for your experiment
  • Multi-node training: using GPU on different machines is handled by SLURM (see code)

On GPU with limited video memory, you will need to reduce memory usage by adjusting --batch_size. Try to set it to the largest value that will fit in your CUDA memory. Since model optimization is performed at the end of each minibatch, smaller batch sizes will gratly slow learning. You can compensate for this by increasing --accumulate_gradient, which controls the number of mini-batches the model sees before optimizing the model.

Dump paths and experiment names

All paths should be absolute : --dump_path ./mydump might not work, --dump_path c:/Users/me/mydump should be fine. The directories where your datasets, models, and logfiles will be generated are constructed from the parameters --dump_path --exp_name and --exp_id, as {dump_path}/{exp_name}/{exp_id}/, if you do not specify an exp_id, a random unique name will be created for you. If you reuse the same dump_path/exp/name/exp_id, generation or training will resume there (adding new examples, or loading the previous model for training).

All results will be logged in file train.logof the experiment path.

All models and datasets can be downloaded from https://dl.fbaipublicfiles.com/MathsFromExamples/. By convention, in all code examples, datasets and models use the path /checkpoint/fcharton/dumped/. You will need to adjust this to the correct path on your local machine.

Data sets

We provide 7 datasets, all can be found on https://dl.fbaipublicfiles.com/MathsFromExamples/data/ as tar.gz archives.

Stability : balanced sample of systems of degree 2 to 5 (50% stable), predicting speed of convergence at 0.01 (largest real part of eigenvalue):

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_stability_balanced.tar.gz

  • ddss_stability_balanced.prefix_counts.train : 25,544,975 systems
  • ddss_stability_balanced.prefix_counts.valid.final : 10,000 systems
  • ddss_stability_balanced.prefix_counts.test.final : 10,000 systems

Stability : random sample of systems of degree 2 to 6, predicting speed of convergence at 0.01

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_stability.tar.gz

  • ddss_stability.prefix_counts.train : 92,994,423 systems
  • ddss_stability.prefix_counts.valid.final : 10,000 systems
  • ddss_stability.prefix_counts.test.final : 10,000 systems

Controllability: balanced sample of systems of degree 3 to 5 (50% stable), predicting controllability (a binary value)

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_control.tar.gz

  • ddss_control.prefix_counts.train : 26,577,934 systems
  • ddss_control.prefix_counts.valid.final : 10,000 systems
  • ddss_control.prefix_counts.test.final : 10,000 systems

Controllability: sample of controllable systems of degree 3 to 6, predicting a control matrix

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_gram.tar.gz

  • ddss_gram.prefix_counts.train : 53,680,092 systems
  • ddss_gram.prefix_counts.valid.final : 10,000 systems
  • ddss_gram.prefix_counts.test.final : 10,000 systems

Non autonomous controllability: random sample (82.4% controllable) of systems of degree 2 and 3, predicting controllability

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_control_t.tar.gz

  • ddss_control_t.prefix_counts.train : 65,754,655 systems
  • ddss_control_t.prefix_counts.valid.final : 10,000 systems
  • ddss_control_t.prefix_counts.test.final : 10,000 systems

Non autonomous controllability: balanced sample (50/50) of systems of degree 2 and 3, predicting controllability

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_control_t_bal.tar.gz

  • ddss_control_t_bal.prefix_counts.train : 23,125,016 systems
  • ddss_control_t_bal.prefix_counts.valid.final : 10,000 systems
  • ddss_control_t_bal.prefix_counts.test.final : 10,000 systems

Partial differential equations with initial conditions, predicting existence of a solution and behavior at infinity

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_fourier.tar.gz

  • ddss_fourier.prefix_counts.train : 52,285,760 systems
  • ddss_fourier.prefix_counts.valid.final : 10,000 systems
  • ddss_fourier.prefix_counts.test.final : 10,000 systems

Training a model from a dataset

python train.py 

# experiment parameters 
# the full path of this experiment will be /checkpoint/fcharton/dumped/ddss_ctrl/exp_1
--dump_path '/checkpoint/fcharton/dumped'   # path for log files and saved models, avoid ./ and other non absolute paths
--exp_name ddss_ctrl                        # name
--exp_id exp_1                              # id : randomly generated if absent

# dataset
--export_data false
--tasks ode_control         # set to `ode_convergence_speed`, `ode_control` or `fourier_cond_init`
# '{tasks},{train_file_path},{valid_file_path},{test_file_path}'
--reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.test.final' 
--reload_size 40000000      # nr of records to load
--max_len 512               # max length of input or output

# model parameters
--emb_dim 512 
--n_enc_layers 6 
--n_dec_layers 6 
--n_heads 8 
--optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01'

# training parameters
--batch_size 256        # minibatch size, reduce to fit available GPU memory
--epoch_size 300000     # how often evaluation on validation set is performed
--beam_eval 0           # use beam search for evaluation (set to 1 for quantitative tasks)
--eval_size 10000       # size of validation set
--batch_size_eval 256   # batchs for validation, reduce to adjust memory

# validation metrics
# valid_{task}_acc or valid_{task}_beam_acc depending on whether beam search is used  
--validation_metrics valid_ode_control_acc 
# stop after no increase in 20 epochs
--stopping_criterion 'valid_ode_control_acc,20' 

Generating your own data sets

To generate a dataset, use the parameters

python train.py --cpu true --export_data true  --reload_data '' --env_base_seed -1  --num_workers 20 --task # task specific parameters 

Generated data (exported as sequences of tokens) will be written in file data.prefix in the dump path of the experiment. To be used for training, these files need to be post-processed as shown in the examples below.

IMPORTANT NOTE : Data generation is very slow, and sometimes results in errors that cause the program to abort and need to be relaunched. Typical generating speeds are one or a few systems per second. Whereas one might want to use this code to experiment with data generation, creating datasets on which our models can be trained (10 million examples or more) requires a lot of computing power (typically 200-300 experiments, with 20 CPU each, running for several days)

Important parameters for data generation are :

  • --tasks : ode_convergence_speed, ode_control or fourier_cond_init
  • --cpu : always set to true
  • --num_workers : set to the number of cores you can use
  • --env_base_seed : set to -1
  • --min_degree and --max_degree : bounds for the size of the systems generated
    For more details, see file 'envs/ode.py' in the source code

Predicting stability - balanced sample (50% stable), systems of degree 2 to 5

# Generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 2 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 5 --eval_value 0.01 --prob_positive 0.5 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_convergence_speed --env_base_seed -1 --exp_name ddss_gen_stab_bal

# Post-processing
# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_stability_balanced.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_stability_balanced.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability_balanced.prefix_counts.train ddss_stability_balanced.prefix_counts.valid > ddss_stability_balanced.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability_balanced.prefix_counts.train ddss_stability_balanced.prefix_counts.test > ddss_stability_balanced.prefix_counts.test.final

Predicting stability - random sample, systems of degree 2 to 6

# Generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 2 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 6 --eval_value 0.01 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_convergence_speed --env_base_seed -1 --exp_name ddss_gen_stab

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_stability.prefix_counts
 
# create train, valid and test samples 
python ~/MathsFromExamples/split_data.py ddss_stability.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability.prefix_counts.train ddss_stability.prefix_counts.valid > ddss_stability.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability.prefix_counts.train ddss_stability.prefix_counts.test > ddss_stability.prefix_counts.test.final

Predicting controllability - balanced sample, systems of degree 3 to 6

# generation command 
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 3 --max_degree 6 --eval_value 0.9 --allow_complex false --jacobian_precision 3 --qualitative true --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_ctrl

# assemble non controllable cases from prefixes
cat */data.prefix \
| grep '0$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_control.prefix_counts.0

# count them
wc -l ddss_control.prefix_counts.0   # 13,298,967

# assemble controllable cases from prefixes
cat */data.prefix \
| grep '1$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
| head -n 13298967 > ddss_control.prefix_counts.1

# assemble prefix_counts
cat ddss_control.prefix_counts.0 ddss_control.prefix_counts.1 | shuf > ddss_control.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_control.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control.prefix_counts.train ddss_control.prefix_counts.valid > ddss_control.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control.prefix_counts.train ddss_control.prefix_counts.test > ddss_control.prefix_counts.test.final

Predicting non autonomous controllability: unbalanced sample, systems of 2 to 3 equations

# generation command 
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 3 --eval_value 0.5 --allow_complex false --jacobian_precision 3 --qualitative false --tau 1 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_ctrl_t

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_control_t.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_control_t.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t.prefix_counts.train ddss_control_t.prefix_counts.valid > ddss_control_t.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t.prefix_counts.train ddss_control_t.prefix_counts.test > ddss_control_t.prefix_counts.test.final

Predicting non autonomous controllability: balanced sample, systems of 2 to 3 equations

# generation command 
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 3 --eval_value 0.5 --allow_complex false --jacobian_precision 3 --qualitative false --tau 1 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_ctrl_t

# assemble non controllable cases from prefixes
cat */data.prefix \
| grep '0$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_control_t.prefix_counts.0

# count them
wc -l ddss_control_t.prefix_counts.0   # 11,572,508

# assemble controllable cases from prefixes
cat */data.prefix \
| grep '1$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
| head -n 11572508 > ddss_control_t.prefix_counts.1

# assemble prefix_counts
cat ddss_control_t.prefix_counts.0 ddss_control_t.prefix_counts.1 | shuf > ddss_control_t_bal.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_control_t_bal.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t_bal.prefix_counts.train ddss_control_t_bal.prefix_counts.valid > ddss_control_t_bal.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t_bal.prefix_counts.train ddss_control_t_bal.prefix_counts.test > ddss_control_t_bal.prefix_counts.test.final

Predicting control matrices - sample of controllable systems, of degree 3 to 6

# generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 3 --max_degree 6 --eval_value 0.5 --allow_complex false --jacobian_precision 2 --qualitative false --predict_gramian true --prob_positive 1.0 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_gram

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_gram.prefix_counts
 
# create train, valid and test samples 
python ~/MathsFromExamples/split_data.py ddss_gram.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_gram.prefix_counts.train ddss_gram.prefix_counts.valid > ddss_gram.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_gram.prefix_counts.train ddss_gram.prefix_counts.test > ddss_gram.prefix_counts.test.final

Predicting the existence of solutions of partial differential equations

# generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 2 --jacobian_precision 2 --positive false --nonnull true --allow_complex false --predict_bounds true --skip_zero_gradient true --prob_int 0.3 --min_degree 2 --max_degree 6 --eval_value 0.01 --prob_positive -1.0 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks fourier_cond_init --env_base_seed -1 --exp_name ddss_gen_fourier

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_fourier.prefix_counts
 
# create train, valid and test samples 
python ~/MathsFromExamples/split_data.py ddss_fourier.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_fourier.prefix_counts.train ddss_fourier.prefix_counts.valid > ddss_fourier.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_fourier.prefix_counts.train ddss_fourier.prefix_counts.test > ddss_fourier.prefix_counts.test.final

Pre-trained models

We provide 7 pretrained models for the various problems. Below are the links, the dataset they were trained on, and the parameters used, and the performance on the validation set (valid.final in the same directory, 10 000 held-out examples).

Predicting stability (qualitative)

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 128 --batch_size_eval 256 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --qualitative true --skip_zero_gradient true --prob_int 0.3 --max_degree 5 --min_degree 2 --eval_verbose 0 --beam_eval 0 --eval_size 10000 --tasks ode_convergence_speed --reload_data 'ode_convergence_speed,/checkpoint/fcharton/dumped/ddss_gen_stab_bal/ddss_stability_balanced.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_stab_bal/ddss_stability_balanced.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_stab_bal/ddss_stability_balanced.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_convergence_speed_acc,40' --validation_metrics valid_ode_convergence_speed_acc --env_base_seed -1 --exp_name ddss_stab_quali

Stability: computing convergence speed

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 1024 --batch_size 128 --batch_size_eval 256 --n_enc_layers 8 --n_dec_layers 8 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 2 --eval_verbose 0 --beam_eval 1 --eval_size 10000 --tasks ode_convergence_speed --reload_data 'ode_convergence_speed,/checkpoint/fcharton/dumped/ddss_gen_stab/ddss_stability.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_stab/ddss_stability.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_stab/ddss_stability.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_convergence_speed_beam_acc,40' --validation_metrics valid_ode_convergence_speed_beam_acc --env_base_seed -1 --exp_name ddss_stab_quanti

Predicting autonomous controllability

 python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 256 --batch_size_eval 256 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 3 --eval_value 0.9 --qualitative true --eval_verbose 0 --beam_eval 0 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_control_acc,20' --validation_metrics valid_ode_control_acc --env_base_seed -1 --exp_name ddss_ctrl

Predicting non-autonomous controllability

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 256 --batch_size_eval 256 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 3 --min_degree 2 --eval_value 0.5 --qualitative false --tau 1 --eval_verbose 0 --beam_eval 0 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_ctrl_t/ddss_control_t.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_ctrl_t/ddss_control_t.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_ctrl_t/ddss_control_t.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_control_acc,60' --validation_metrics valid_ode_control_acc --env_base_seed -1 --exp_name ddss_ctrl_t

Computing control matrices: predicting solution up to 10%

python /private/home/fcharton/workdir/ddss_gram/2021_03_18_12_05_11/train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 128 --batch_size_eval 128 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 3 --eval_value 0.5 --predict_gramian true --euclidian_metric true --auxiliary_task false --eval_verbose 0 --beam_eval 1 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.test.final' --reload_size 50000000 --stopping_criterion 'valid_ode_control_beam_acc,40' --validation_metrics valid_ode_control_beam_acc --env_base_seed -1 --exp_name ddss_gram

Computing control matrices: predicting a correct mathematical solution

python /private/home/fcharton/workdir/ddss_gram/2021_03_09_12_09_38/train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 128 --batch_size_eval 128 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 3 --eval_value 0.5 --predict_gramian true --euclidian_metric false --auxiliary_task false --eval_verbose 0 --beam_eval 1 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_control_beam_acc,20' --validation_metrics valid_ode_control_beam_acc --env_base_seed -1 --exp_name ddss_gram

Predicting the existence of solutions of partial differential equations

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --accumulate_gradients 1 --emb_dim 512 --n_enc_layers 8 --n_dec_layers 8 --batch_size 64 --batch_size_eval 64 --eval_size 10000 --predict_jacobian false --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 1024 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --precision 3 --jacobian_precision 1 --positive false --nonnull true --prob_int '0.3' --max_degree 6 --eval_value 0.5 --allow_complex false --predict_bounds true --skip_zero_gradient true --eval_verbose 0 --beam_eval 0 --tasks fourier_cond_init --reload_data 'fourier_cond_init,/checkpoint/fcharton/dumped/ddss_gen_fourier/ddss_fourier.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_fourier/ddss_fourier.prefix_counts.valid,/checkpoint/fcharton/dumped/ddss_gen_fourier/ddss_fourier.prefix_counts.test' --reload_size 40000000 --stopping_criterion 'valid_fourier_cond_init_acc,20' --validation_metrics valid_fourier_cond_init_acc --env_base_seed -1 --exp_name ddss_fourier

Evaluating trained models

To evaluate over a trained model model.pth on a specific test set test.data, run the model with the same parameters as training, setting --eval_only trueand --reload_model to the path to your model (e.g. --reload_model /model_path/model.pth), and setting the second file --reload_datato your test data (e.g. --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.train,/MYPATH/test.data,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.test.final'). Set --eval_sizeto the size of your dataset. At present, only the validation dataset is used for evaluation, but you can change this by toggling comments on lines 367 and 368 of file evaluator.py.

Citation

This code is released under a Creative Commons License, see LICENCE file for more details. If you use this code, consider citing

@misc{charton2021learning, title={Learning advanced mathematical computations from examples}, author={François Charton and Amaury Hayat and Guillaume Lample}, year={2021}, eprint={2006.06462}, archivePrefix={arXiv}, primaryClass={cs.LG} }

Owner
Facebook Research
Facebook Research
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022