ReAct: Out-of-distribution Detection With Rectified Activations

Related tags

Deep Learningreact
Overview

ReAct: Out-of-distribution Detection With Rectified Activations

This is the source code for paper ReAct: Out-of-distribution Detection With Rectified Activations by Yiyou Sun, Chuan Guo and Yixuan Li.

In this work, we propose ReAct—a simple technique for reducing model overconfidence on OOD data. Our method is motivated by novel analysis on internal activations of neural networks, which displays highly distinctive signature patterns for most OOD distributions.

Usage

1. Dataset Preparation

In-distribution dataset

Please download ImageNet-1k and place the training data and validation data in ./datasets/id_data/ILSVRC-2012/train and ./datasets/id_data/ILSVRC-2012/val, respectively.

Out-of-distribution dataset

We have curated 4 OOD datasets from iNaturalist, SUN, Places, and Textures, and de-duplicated concepts overlapped with ImageNet-1k.

For iNaturalist, SUN, and Places, we have sampled 10,000 images from the selected concepts for each dataset, which can be download via the following links:

wget http://pages.cs.wisc.edu/~huangrui/imagenet_ood_dataset/iNaturalist.tar.gz
wget http://pages.cs.wisc.edu/~huangrui/imagenet_ood_dataset/SUN.tar.gz
wget http://pages.cs.wisc.edu/~huangrui/imagenet_ood_dataset/Places.tar.gz

For Textures, we use the entire dataset, which can be downloaded from their original website.

Please put all downloaded OOD datasets into ./datasets/ood_data/.

2. Pre-trained Model Preparation

The model we used in the paper is the pre-trained ResNet-50 and MobileNet-v2 provided by Pytorch. The download process will start upon running.

3. OOD Detection Evaluation

To reproduce our results on ResNet-50, please run:

python eval.py --threshold 1.0

To reproduce baseline approaches (Energy Score), please run:

python eval.py --threshold 1e6  #we set the threshold close to infinity, so it is the original energy score.

OOD Detection Results

ReACT achieves state-of-the-art performance averaged on the 4 OOD datasets.

results

Citation

If you use our codebase, please cite our work:

@inproceedings{sun2021react,
  title={ReAct: Out-of-distribution Detection With Rectified Activations},
  author={Sun, Yiyou and Guo, Chuan and Li, Yixuan},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
Owner
CS Research Group led by Prof. Sharon Li
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022