Python interface for SmartRF Sniffer 2 Firmware

Overview

#TI SmartRF Packet Sniffer 2 Python Interface

TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this project here: https://www.ti.com/tool/download/PACKET-SNIFFER-2

Unfortunately sometimes you want to do stuff like scan channels, which is a hassle to do via the GUI. Luckily they document the interface.

Documentation from TI

The Documentation is installed when you install the Tool, but you can find it online.

Link to documentation: https://dev.ti.com/tirex/explore/node?node=AJ1gMrg0O1AMxi9KUZmTiQ__FUz-xrs__LATEST

Direct link to firmware interface codes: https://software-dl.ti.com/lprf/packet_sniffer_2/docs/user_guide/html/sniffer_fw/firmware/command_interface.html

Errata from TI Docs

The TI documentation claims the serial interface is at 921.6kbit baud, but on my board it was at 3Mbit baud. I'm not sure if all firmware does this or just some of the boards?

Setup

You'll need to flash the firmware onto your board. Basically ensure the GUI tool works first before trying this interface, as you'll get less feedback with this Python tool.

Scanning

For example, on my CC1352R1 board I can scan all 900 MHz channels + PHYs:

test = TICommand('COM90')

for phy in range(0, 9):
    for ch in range(0, 129):
        print("Phy = %x, Channel %d"%(phy, ch))
        test.sniff_stop()    
        test.cmd_set_frequencymhz(902.2 + 0.2*ch)
        test.cmd_set_phy(phy)
        test.sniff_start()

        rxd = 0

        for i in range(0, 3):
            time.sleep(1)

            resp = test.rx()
            if resp:
                print(resp)
                rxd += 1

Note the PHY index is specified in the reference docs from TI, as each board/chip uses different indexes. Also some of them are using the wrong frequency for the given phy etc, this is a quick-n-dirty way of doing it.

Owner
Colin O'Flynn
Colin is a huge nerd.
Colin O'Flynn
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022