Few-Shot Graph Learning for Molecular Property Prediction

Overview

Few-shot Graph Learning for Molecular Property Prediction

Introduction

This is the source code and dataset for the following paper:

Few-shot Graph Learning for Molecular Property Prediction. In WWW 2021.

Contact Zhichun Guo ([email protected]), if you have any questions.

Datasets

The datasets uploaded can be downloaded to train our model directly.

The original datasets are downloaded from Data. We utilize Original_datasets/splitdata.py to split the datasets according to the molecular properties and save them in different files in the Original_datasets/[DatasetName]/new. Then run main.py, the datasets will be automatically preprocessed by loader.py and the preprocessed results will be saved in the Original_datasets/[DatasetName]/new/[PropertyNumber]/propcessed.

Usage

Installation

We used the following Python packages for the development by python 3.6.

- torch = 1.4.0
- torch-geometric = 1.6.1
- torch-scatter = 2.0.4
- torch-sparse = 0.6.1
- scikit-learn = 0.23.2
- tqdm = 4.50.0
- rdkit

Run code

Datasets and k (for k-shot) can be changed in the last line of main.py.

python main.py

Performance

The performance of meta-learning is not stable for some properties. We report two times results and the number of the iteration where we obtain the best results here for your reference.

Dataset k Iteration Property Results k Iteration Property Results
Sider 1 307/599 Si-T1 75.08/75.74 5 561/585 Si-T1 76.16/76.47
Si-T2 69.44/69.34 Si-T2 68.90/69.77
Si-T3 69.90/71.39 Si-T3 72.23/72.35
Si-T4 71.78/73.60 Si-T4 74.40/74.51
Si-T5 79.40/80.50 Si-T5 81.71/81.87
Si-T6 71.59/72.35 Si-T6 74.90/73.34
Ave. 72.87/73.82 Ave. 74.74/74.70
Tox21 1 1271/1415 SR-HS 73.72/73.90 5 1061/882 SR-HS 74.85/74.74
SR-MMP 78.56/79.62 SR-MMP 80.25/80.27
SR-p53 77.50/77.91 SR-p53 78.86/79.14
Ave. 76.59/77.14 Ave. 77.99/78.05

Acknowledgements

The code is implemented based on Strategies for Pre-training Graph Neural Networks.

Reference

@article{guo2021few,
  title={Few-Shot Graph Learning for Molecular Property Prediction},
  author={Guo, Zhichun and Zhang, Chuxu and Yu, Wenhao and Herr, John and Wiest, Olaf and Jiang, Meng and Chawla, Nitesh V},
  journal={arXiv preprint arXiv:2102.07916},
  year={2021}
}
Owner
Zhichun Guo
Zhichun Guo is a Ph.D. student at University of Notre Dame.
Zhichun Guo
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022