Weakly Supervised Segmentation by Tensorflow.

Overview

Simple-does-it-weakly-supervised-instance-and-semantic-segmentation

There are five weakly supervised networks in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017). Respectively, Naive, Box, Box^i, Grabcut+, M∩G+. All of them use cheap-to-generate label, bounding box, during training and don't need other informations except image during testing.

This repo contains a TensorFlow implementation of Grabcut version of semantic segmentation.

My Environment

Environment 1

  • Operating System:
    • Arch Linux 4.15.15-1
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7.0.5-2
  • GPU:
    • GTX 1070 8G
  • Nvidia driver:
    • 390.25
  • Python:
    • python 3.6.4
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.5.0

Environment 2

  • Operating System:
    • Ubuntu 16.04
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7
  • GPU:
    • GTX 1060 6G
  • Nvidia driver:
    • 390.48
  • Python:
    • python 3.5.2
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.6.0

Downloading the VOC12 dataset

Setup Dataset

My directory structure

./Simple_does_it/
├── Dataset
│   ├── Annotations
│   ├── CRF_masks
│   ├── CRF_pairs
│   ├── Grabcut_inst
│   ├── Grabcut_pairs
│   ├── JPEGImages
│   ├── Pred_masks
│   ├── Pred_pairs
│   ├── SegmentationClass
│   └── Segmentation_label
├── Model
│   ├── Logs
│   └── models
├── Parser_
├── Postprocess
├── Preprocess
└── Util

VOC2012 directory structure

VOCtrainval_11-May-2012
└── VOCdevkit
    └── VOC2012
        ├── Annotations
        ├── ImageSets
        │   ├── Action
        │   ├── Layout
        │   ├── Main
        │   └── Segmentation
        ├── JPEGImages
        ├── SegmentationClass
        └── SegmentationObject
  • Put annotations in 'Annotations'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/Annotations/* {PATH}/Simple_does_it/Dataset/Annotations/ 
  • Put images in 'JPEGImages'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/JPEGImages/* {PATH}/Simple_does_it/Dataset/JPEGImages/
  • Put Ground truth in 'SegmentationClass' for computing mIoU and IoU
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/SegmentationClass/* {PATH}/Simple_does_it/Dataset/SegmentationClass/

Demo (See Usage for more details)

Download pretrain model training on VOC12 (train set size: 1464)

  • Pretrain model
    • Move files from VOC12_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 1020
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt --restore_target 1020   
    
  • Performance
set CRF mIoU
train X 64.93%
train O 66.90%
val X 39.03%
val O 42.54%

Download pretrain model training on VOC12 + SBD (train set size: 10582)

  • Pretrain model
    • Move files from VOC12_SBD_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 538
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name train.txt --restore_target 538
    
  • Performance
set CRF mIoU
train X 66.87%
train O 68.21%
val X 51.90%
val O 54.52%

Training (See Usage for more details)

Download pretrain vgg16

Extract annotations from 'Annotations' according to 'train.txt' or 'voc_train.txt' for VOC12 + SDB or VOC12

  • For VOC12 + SBD (train set size: 10582)
    • This will generate a 'train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py 
    
  • For VOC12 (train set size: 1464)
    • This will generate a 'voc_train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py --train_set_name voc_train.txt --train_pair_name voc_train_pairs.txt
    

Generate label for training by 'grabcut.py'

  • Result of grabcut for each bounding box will be stored at 'Grabcut_inst'
  • Result of grabcut for each image will be stored at 'Segmentation_label'
  • Result of grabcut for each image combing with image and bounding box will be stored at 'Grabcut_pairs'
  • Note: If the instance hasn't existed at 'Grabcut_inst', grabcut.py will grabcut that image
  • For VOC12 + SBD (train set size: 10582)
    python ./Preprocess/grabcut.py
    
  • For VOC12 (train set size: 1464)
    python ./Preprocess/grabcut.py --train_pair_name voc_train_pairs.txt
    

Train network

  • The event file for tensorboard will be stored at 'Logs'
  • Train on VOC12 + SBD (train set size: 10582)
    • This will consume lot of memory.
      • The train set is so large.
      • Data dtyp will be casted from np.uint8 to np.float16 for mean substraction.
    • Eliminate mean substraction for lower memory usage.
      • Change the dtype in ./Dataset/load.py from np.float16 to np.uint8
      • Comment mean substraction in ./Model/model.py
    python ./Model/model.py --is_train 1 --set_name train.txt   
    
  • Train on VOC12 (train set size: 1464)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt   
    

Testing (See Usage for more details)

Test network

  • Result will be stored at 'Pred_masks'
  • Result combing with image will be stored at 'Pred_pairs'
  • Result after dense CRF will be stored at 'CRF_masks'
  • Result after dense CRF combing with image will be stored at 'CRF_pairs'
  • Test on VOC12 (val set size: 1449)
    python ./Model/model.py --restore_target {num}
    

Performance (See Usage for more details)

Evaluate mIoU and IoU

  • Compute mIoU and IoU
    python ./Dataset/mIoU.py 
    

Usage

Parser_/parser.py

  • Parse the command line argument

Util/divied.py

  • Generating train.txt and test.txt according to 'JPEGImages'
  • Not necessary
usage: divied.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                 [--train_set_ratio TRAIN_SET_RATIO]
                 [--train_set_name TRAIN_SET_NAME]
                 [--test_set_name TEST_SET_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default: Util/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_set_ratio TRAIN_SET_RATIO
                        ratio for training set, [0,10] (default: 7)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --test_set_name TEST_SET_NAME
                        name for testing set (default: val.txt)

Dataset/make_train.py

  • Extract annotations from 'Annotations' according to 'train.txt'
  • Content: {image name}###{image name + num + class + .png}###{bbox ymin}###{bbox xmin}###{bbox ymax}###{bbox xmax}###{class}
  • Example: 2011_003038###2011_003038_3_15.png###115###1###233###136###person
usage: make_train.py [-h] [--dataset DATASET]
                     [--train_set_name TRAIN_SET_NAME]
                     [--ann_dir_name ANN_DIR_NAME]
                     [--train_pair_name TRAIN_PAIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        Dataset/../Parser_/../Dataset)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --ann_dir_name ANN_DIR_NAME
                        name for annotation directory (default: Annotations)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)

Preprocess/grabcut.py

  • Grabcut a traditional computer vision method
  • Input bounding box and image then generating label for training
usage: grabcut.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                  [--train_pair_name TRAIN_PAIR_NAME]
                  [--grabcut_dir_name GRABCUT_DIR_NAME]
                  [--img_grabcuts_dir IMG_GRABCUTS_DIR]
                  [--pool_size POOL_SIZE] [--grabcut_iter GRABCUT_ITER]
                  [--label_dir_name LABEL_DIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Preprocess/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)
  --grabcut_dir_name GRABCUT_DIR_NAME
                        name for grabcut directory (default: Grabcut_inst)
  --img_grabcuts_dir IMG_GRABCUTS_DIR
                        name for image with grabcuts directory (default:
                        Grabcut_pairs)
  --pool_size POOL_SIZE
                        pool for multiprocess (default: 4)
  --grabcut_iter GRABCUT_ITER
                        grabcut iteration (default: 3)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)

Model/model.py

  • Deeplab-Largefov
usage: model.py [-h] [--dataset DATASET] [--set_name SET_NAME]
                [--label_dir_name LABEL_DIR_NAME]
                [--img_dir_name IMG_DIR_NAME] [--classes CLASSES]
                [--batch_size BATCH_SIZE] [--epoch EPOCH]
                [--learning_rate LEARNING_RATE] [--momentum MOMENTUM]
                [--keep_prob KEEP_PROB] [--is_train IS_TRAIN]
                [--save_step SAVE_STEP] [--pred_dir_name PRED_DIR_NAME]
                [--pair_dir_name PAIR_DIR_NAME] [--crf_dir_name CRF_DIR_NAME]
                [--crf_pair_dir_name CRF_PAIR_DIR_NAME] [--width WIDTH]
                [--height HEIGHT] [--restore_target RESTORE_TARGET]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Model/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --classes CLASSES     number of classes for segmentation (default: 21)
  --batch_size BATCH_SIZE
                        batch size for training (default: 16)
  --epoch EPOCH         epoch for training (default: 2000)
  --learning_rate LEARNING_RATE
                        learning rate for training (default: 0.01)
  --momentum MOMENTUM   momentum for optimizer (default: 0.9)
  --keep_prob KEEP_PROB
                        probability for dropout (default: 0.5)
  --is_train IS_TRAIN   training or testing [1 = True / 0 = False] (default:
                        0)
  --save_step SAVE_STEP
                        step for saving weight (default: 2)
  --pred_dir_name PRED_DIR_NAME
                        name for prediction masks directory (default:
                        Pred_masks)
  --pair_dir_name PAIR_DIR_NAME
                        name for pairs directory (default: Pred_pairs)
  --crf_dir_name CRF_DIR_NAME
                        name for crf prediction masks directory (default:
                        CRF_masks)
  --crf_pair_dir_name CRF_PAIR_DIR_NAME
                        name for crf pairs directory (default: CRF_pairs)
  --width WIDTH         width for resize (default: 513)
  --height HEIGHT       height for resize (default: 513)
  --restore_target RESTORE_TARGET
                        target for restore (default: 0)

Dataset/mIoU.py

  • Compute mIoU and IoU
usage: mIoU.py [-h] [--dataset DATASET] [--set_name SET_NAME]
               [--GT_dir_name GT_DIR_NAME] [--Pred_dir_name PRED_DIR_NAME]
               [--classes CLASSES]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Dataset/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --GT_dir_name GT_DIR_NAME
                        name for ground truth directory (default:
                        SegmentationClass)
  --Pred_dir_name PRED_DIR_NAME
                        name for prediction directory (default: CRF_masks)
  --classes CLASSES     number of classes (default: 21)

Dataset/load.py

  • Loading data for training / testing according to train.txt / val.txt

Dataset/save_result.py

  • Save result during testing

Dataset/voc12_class.py

  • Map the class to grayscale value

Dataset/voc12_color.py

  • Map the grayscale value to RGB

Postprocess/dense_CRF.py

  • Dense CRF a machine learning method
  • Refine the result

Reference

Owner
CHENG-YOU LU
CHENG-YOU LU
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022