Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Overview

Neural Networks For Chess

cover

Free Book

  • Grab your free PDF copy HERE
  • Buy a printed copy at HERE or HERE

Donations are welcome:

paypal

Contents

AlphaZero, Leela Chess Zero and Stockfish NNUE revolutionized Computer Chess. This book gives a complete introduction into the technical inner workings of such engines.

The book is split into four chapters:

  1. The first chapter introduces neural networks and covers all the basic building blocks that are used to build deep networks such as those used by AlphaZero. Contents include the perceptron, back-propagation and gradient descent, classification, regression, multilayer perpectron, vectorization techniques, convolutional netowrks, squeeze and exciation networks, fully connected networks, batch normalization and rectified linear units, residual layers, overfitting and underfitting.

  2. The second chapter introduces classical search techniques used for chess engines as well as those used by AlphaZero. Contents include minimax, alpha-beta search, and Monte Carlo tree search.

  3. The third chapter shows how modern chess engines are designed. Aside from the ground-breaking AlphaGo, AlphaGo Zero and AlphaZero we cover Leela Chess Zero, Fat Fritz, Fat Fritz 2 and Effectively Updateable Neural Networks (NNUE) as well as Maia.

  4. The fourth chapter is about implementing a miniaturized AlphaZero. Hexapawn, a minimalistic version of chess, is used as an example for that. Hexapawn is solved by minimax search and training positions for supervised learning are generated. Then as a comparison, an AlphaZero-like training loop is implemented where training is done via self-play combined with reinforcement learning. Finally, AlphaZero-like training and supervised training are compared.

Source Code

Just clone this repository or directly browse the files. You will find here all sources of the examples of the book.

About

During COVID, I worked a lot from home and saved approximately 1.5 hours of commuting time each day. I decided to use that time to do something useful (?) and wrote a book about computer chess. In the end I decided to release the book for free.

Profits

To be completely transparent, here is what I make from every paper copy sold on Amazon. The book retails for $16.95 (about 15 Euro).

  • printing costs $4.04
  • Amazon takes $6.78
  • my royalties are $6.13

Errata

If you find mistakes, please report them here - your help is appreciated!

You might also like...
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

PyTorch implementation of 1712.06087
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Comments
  • 'Board' object has no attribute 'outcome'

    'Board' object has no attribute 'outcome'

    I just executed python mcts.py and received an error message: 34 0 Traceback (most recent call last): File "mcts.py", line 134, in payout = simulate(node) File "mcts.py", line 63, in simulate while(board.outcome(claim_draw = True) == None): AttributeError: 'Board' object has no attribute 'outcome'

    opened by barvinog 5
  • Invalid Reduction Key auto.

    Invalid Reduction Key auto.

    Thank you for the source code of Chapter 5. I executed python mnx_generateTrainingData.py - OK Then python sup_network.py - OK

    Then I executed python sup_eval.py and got the error :

    Traceback (most recent call last): File "sup_eval.py", line 6, in model = keras.models.load_model("supervised_model.keras") File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 492, in load_wrapper return load_function(*args, **kwargs) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 584, in load_model model = _deserialize_model(h5dict, custom_objects, compile) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 369, in _deserialize_model sample_weight_mode=sample_weight_mode) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py", line 75, in symbolic_fn_wrapper return func(*args, **kwargs) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 229, in compile self.total_loss = self._prepare_total_loss(masks) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 692, in _prepare_total_loss y_true, y_pred, sample_weight=sample_weight) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/losses.py", line 73, in call losses, sample_weight, reduction=self.reduction) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/utils/losses_utils.py", line 156, in compute_weighted_loss Reduction.validate(reduction) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/utils/losses_utils.py", line 35, in validate raise ValueError('Invalid Reduction Key %s.' % key) ValueError: Invalid Reduction Key auto.

    opened by barvinog 2
  • Chapter 2 convolution.py

    Chapter 2 convolution.py

    Hello Dominik, I'm a Python novice, but an experienced chess player and long ago a developer of software for infinite dimensional optimization. I've installed the latest Python on a 64 cores Ryzen Threadripper with two NVIDIA 3090 graphic cards. I study your very helpful overview of modern chess engine programming and started with Chapter 2 where except convolution.py all examples work fine. I have installed module scikit-image as skimage doesn't load correctly. Then (without changing the source of convolution.py) I get the following warning

    PS C:\Users\diete\Downloads\neural_network_chess-1.3\chapter_02> python.exe .\convolution.py (640, 480) Lossy conversion from float64 to uint8. Range [-377.0, 433.0]. Convert image to uint8 prior to saving to suppress this warning. PS C:\Users\diete\Downloads\neural_network_chess-1.3\chapter_02>

    and after some seconds python exits without any more output. Help with this problem is kindly appreciated. Dieter

    opened by d-kraft 1
Releases(v1.5)
Owner
Dominik Klein
random code snippets, including the chess program Jerry
Dominik Klein
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022