WaveFake: A Data Set to Facilitate Audio DeepFake Detection

Related tags

Deep LearningWaveFake
Overview

WaveFake: A Data Set to Facilitate Audio DeepFake Detection

logo

This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper WaveFake.

Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes" has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have - so far - been neglected. In this paper, we aim to narrow this gap. We present a novel data set, for which we collected ten sample sets from six different network architectures, spanning two languages. We analyze the frequency statistics comprehensively, discovering subtle differences between the architectures, specifically among the higher frequencies. Additionally, to facilitate further development of detection methods, we implemented three different classifiers adopted from the signal processing community to give practitioners a baseline to compare against. In a first evaluation, we already discovered significant trade-offs between the different approaches. Neural network-based approaches performed better on average, but more traditional models proved to be more robust.

Dataset & Pre-trained Models

You can find our dataset on zenodo and we also provide pre-trained models.

Setup

You can install all needed dependencies by running:

pip install -r requirements.txt

RawNet2 Model

For consistency, we use the RawNet2 model provided by the ASVSpoof 2021 challenge. Please download the model specifications here and place it under dfadetect/models as raw_net2.py.

Statistics & Plots

To recreate the plots/statistics of the paper, use:

python statistics.py -h

usage: statistics.py [-h] [--amount AMOUNT] [--no-stats] [DATASETS ...]

positional arguments:
  DATASETS              Path to datasets. The first entry is assumed to be the referrence one. Specified as follows 
   
    

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to concider.
  --no-stats, -s        Do not compute stats, only plots.

   

Example

python statistics.py /path/to/reference/data,ReferenceDataName /path/to/generated/data,GeneratedDataName -a 10000

Training models

You can use the training script as follows:

python train_models.py -h

usage: train_models.py [-h] [--amount AMOUNT] [--clusters CLUSTERS] [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--retraining RETRAINING] [--ckpt CKPT] [--use_em] [--raw_net] [--cuda] [--lfcc] [--debug] [--verbose] REAL FAKE

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --batch_size BATCH_SIZE, -b BATCH_SIZE
                        Batch size (default: 8).
  --epochs EPOCHS, -e EPOCHS
                        Epochs (default: 5).
  --retraining RETRAINING, -r RETRAINING
                        Retraining tries (default: 10).
  --ckpt CKPT           Checkpoint directory (default: trained_models).
  --use_em              Use EM version?
  --raw_net             Train raw net version?
  --cuda, -c            Use cuda?
  --lfcc, -l            Use LFCC instead of MFCC?
  --debug, -d           Only use minimal amount of files?
  --verbose, -v         Display debug information?

Example

To train all EM-GMMs use:

python train_models.py /data/LJSpeech-1.1/wavs /data/generated_audio -k 128 -v --use_em --epochs 100

Evaluation

For evaluation you can use the evaluate_models script:

python evaluate_models.p -h

usage: evaluate_models.py [-h] [--output OUTPUT] [--clusters CLUSTERS] [--amount AMOUNT] [--raw_net] [--debug] [--cuda] REAL FAKE MODELS

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.
  MODELS                Directory containing model checkpoints.

optional arguments:
  -h, --help            show this help message and exit
  --output OUTPUT, -o OUTPUT
                        Output file name.
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --raw_net, -r         RawNet models?
  --debug, -d           Only use minimal amount of files?
  --cuda, -c            Use cuda?

Example

python evaluate_models.py /data/LJSpeech-1.1/wavs /data/generated_audio trained_models/lfcc/em

Make sure to move the out-of-distribution models to a seperate directory first!

Attribution

We provide a script to attribute the GMM models:

python attribute.py -h

usage: attribute.py [-h] [--clusters CLUSTERS] [--steps STEPS] [--blur] FILE REAL_MODEL FAKE_MODEL

positional arguments:
  FILE                  Audio sample to attribute.
  REAL_MODEL            Real model to attribute.
  FAKE_MODEL            Fake Model to attribute.

optional arguments:
  -h, --help            show this help message and exit
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --steps STEPS, -m STEPS
                        Amount of steps for integrated gradients.
  --blur, -b            Compute BlurIG instead.

Example

python attribute.py /data/LJSpeech-1.1/wavs/LJ008-0217.wav path/to/real/model.pth path/to/fake/model.pth

BibTeX

When you cite our work feel free to use the following bibtex entry:

@inproceedings{
  frank2021wavefake,
  title={{WaveFake: A Data Set to Facilitate Audio Deepfake Detection}},
  author={Joel Frank and Lea Sch{\"o}nherr},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2021},
}
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023