Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Overview

Visual Interestingness


Install Dependencies

This version is tested in PyTorch 1.7

  pip3 install -r requirements.txt

Long-term Learning

  • You may skip this step, if you download the pre-trained vgg16.pt into folder "saves".

  • Download coco dataset into folder [data-root]:

    bash download_coco.sh [data-root] # replace [data-root] by your desired location
    

    The dataset will be look like:

    data-root
    ├──coco
       ├── annotations
       │   ├── annotations_trainval2017
       │   └── image_info_test2017
       └── images
           ├── test2017
           ├── train2017
           └── val2017
    
  • Run

    python3 longterm.py --data-root [data-root] --model-save saves/vgg16.pt
    
    # This requires a long time for training on single GPU.
    # Create a folder "saves" manually and a model named "ae.pt" will be saved.
    

Short-term Learning

  • Dowload the SubT front camera data (SubTF) and put into folder "data-root", so that it looks like:

    data-root
    ├──SubTF
       ├── 0817-ugv0-tunnel0
       ├── 0817-ugv1-tunnel0
       ├── 0818-ugv0-tunnel1
       ├── 0818-ugv1-tunnel1
       ├── 0820-ugv0-tunnel1
       ├── 0821-ugv0-tunnel0
       ├── 0821-ugv1-tunnel0
       ├── ground-truth
       └── train
    
  • Run

    python3 shortterm.py --data-root [data-root] --model-save saves/vgg16.pt --dataset SubTF --memory-size 100 --save-flag n100usage
    
    # This will read the previous model "ae.pt".
    # A new model "ae.pt.SubTF.n1000.mse" will be generated.
    
  • You may skip this step, if you download the pre-trained vgg16.pt.SubTF.n100usage.mse into folder "saves".

On-line Learning

  • Run

      python3 online.py --data-root [data-root] --model-save saves/vgg16.pt.SubTF.n100usage.mse --dataset SubTF --test-data 0 --save-flag n100usage
    
      # --test-data The sequence ID in the dataset SubTF, [0-6] is avaiable
      # This will read the trained model "vgg16.pt.SubTF.n100usage.mse" from short-term learning.
    
  • Alternatively, you may test all sequences by running

      bash test.sh
    
  • This will generate results files in folder "results".

  • You may skip this step, if you download our generated results.


Evaluation

  • We follow the SubT tutorial for evaluation, simply run

    python performance.py --data-root [data-root] --save-flag n100usage --category normal --delta 1 2 3
    # mean accuracy: [0.64455275 0.8368784  0.92165116 0.95906876]
    
    python performance.py --data-root [data-root] --save-flag n100usage --category difficult --delta 1 2 4
    # mean accuracy: [0.42088688 0.57836163 0.67878168 0.75491805]
    
  • This will generate performance figures and create data curves for two categories in folder "performance".


Citation

      @inproceedings{wang2020visual,
        title={Visual memorability for robotic interestingness via unsupervised online learning},
        author={Wang, Chen and Wang, Wenshan and Qiu, Yuheng and Hu, Yafei and Scherer, Sebastian},
        booktitle={European Conference on Computer Vision (ECCV)},
        year={2020},
        organization={Springer}
      }
      
      @article{wang2021unsupervised,
        title={Unsupervised Online Learning for Robotic Interestingness with Visual Memory},
        author={Wang, Chen and  Qiu, Yuheng and Wang, Wenshan and Hu, Yafei anad Kim, Seungchan and Scherer, Sebastian},
        journal={IEEE Transactions on Robotics (T-RO)},
        year={2021},
        publisher={IEEE}
      }

You may watch the following video to catch the idea of this work.

You might also like...
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Code for ECCV 2020 paper
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

SNE-RoadSeg in PyTorch, ECCV 2020
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

[ECCV 2020] Gradient-Induced Co-Saliency Detection
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Code for Towards Streaming Perception (ECCV 2020) :car:
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Comments
  • Variable

    Variable

    https://github.com/wang-chen/interestingness/blob/6994d50bd47d14b617f34f5c36c1beaba03acfdc/test_interest.py#L94

    I think using Variable() will just return a tensor object in the new pytorch version.

    opened by haleqiu 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023