Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Related tags

Deep Learningvln-bert
Overview

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh, and Dhruv Batra

Paper: https://arxiv.org/abs/2004.14973

Model Zoo

A variety of pre-trained VLN-BERT weights can accessed through the following links:

Pre-training Stages Job ID Val Unseen SR URL
0 no pre-training 174631 30.52% TBD
1 1 175134 45.17% TBD
3 1 and 2 221943 49.64% download
2 1 and 3 220929 50.02% download
4 1, 2, and 3 (Full Model) 220825 59.26% download

Usage Instructions

Follow the instructions in INSTALL.md to setup this codebase. The instructions walk you through several steps including preprocessing the Matterport3D panoramas by extracting regions with a pretrained object detector.

Training

To preform stage 3 of pre-training, first download ViLBERT weights from here. Then, run:

python \
-m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
train.py \
--from_pretrained <path/to/vilbert_pytorch_model_9.bin> \
--save_name [pre_train_run_id] \
--num_epochs 50 \
--warmup_proportion 0.08 \
--cooldown_factor 8 \
--masked_language \
--masked_vision \
--no_ranking

To fine-tune VLN-BERT for the path selection task, run:

python \
-m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
train.py \
--from_pretrained <path/to/pytorch_model_50.bin> \
--save_name [fine_tune_run_id]

Evaluation

To evaluate a pre-trained model, run:

python test.py \
--split [val_seen|val_unseen] \
--from_pretrained <path/to/run_[run_id]_pytorch_model.bin> \
--save_name [run_id]

followed by:

python scripts/calculate-metrics.py <path/to/results_[val_seen|val_unseen].json>

Citation

If you find this code useful, please consider citing:

@inproceedings{majumdar2020improving,
  title={Improving Vision-and-Language Navigation with Image-Text Pairs from the Web},
  author={Arjun Majumdar and Ayush Shrivastava and Stefan Lee and Peter Anderson and Devi Parikh and Dhruv Batra},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}
Owner
Arjun Majumdar
PhD student at Georgia Tech.
Arjun Majumdar
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021