VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

Related tags

Deep LearningVGGVox
Overview

VGGVox models for speaker identification and verification

This directory contains code to import and evaluate the speaker identification and verification models pretrained on the VoxCeleb(1 & 2) datasets as described in the following papers (1 and 2):

[1] A. Nagrani*, J. S. Chung*, A. Zisserman, VoxCeleb: a large-scale speaker identification dataset, 
INTERSPEECH, 2017

[2] J. S. Chung*, A. Nagrani*, A. Zisserman, VoxCeleb2: Deep Speaker Recognition, 
INTERSPEECH, 2018

The models trained for verification map voice spectrograms to a compact Euclidean space where distances directly correspond to a measure of speaker similarity. Such embeddings can be used for tasks such as speaker verification, clustering and diarisation.

Prerequisites

[1] Matlab

[2] Matconvnet.

Installing

The easiest way to use the code in this repo is with the vl_contrib package manager. To install, follow these steps:

  1. Install and compile matconvnet by following instructions here.

  2. Run:

vl_contrib install VGGVox
vl_contrib setup VGGVox
  1. You can then run the demo scripts provided to import and test the models. There are three short demo scripts. The first two scripts are for identification and verification models trained on VoxCeleb1. The third script imports and test a verification model trained on VoxCeleb2. These demos demonstrate how to evaluate the models directly on .wav audio files:
demo_vggvox_identif 
demo_vggvox_verif 
demo_vggvox_verif_voxceleb2

Models

The matconvnet models can also be downloaded directly using the following links:

Model trained for identification on VoxCeleb1

Model trained for verification on VoxCeleb1

Model trained for verification on VoxCeleb2 (this is a resnet based model)

Datasets

These models have been pretrained on the VoxCeleb (1&2) datasets. VoxCeleb contains over 1 million utterances for 7,000+ celebrities, extracted from videos uploaded to YouTube. The speakers span a wide range of different ethnicities, accents, professions and ages. The dataset can be downloaded directly from here.

Citation

If you use this code then please cite:

@InProceedings{Nagrani17,
  author       = "Nagrani, A. and Chung, J.~S. and Zisserman, A.",
  title        = "VoxCeleb: a large-scale speaker identification dataset",
  booktitle    = "INTERSPEECH",
  year         = "2017",
}


@InProceedings{Nagrani17,
  author       = "Chung, J.~S. and Nagrani, A. and Zisserman, A.",
  title        = "VoxCeleb2: Deep Speaker Recognition",
  booktitle    = "INTERSPEECH",
  year         = "2018",
}

Fixes

Note - since we take only the magnitude of the spectrogram, the matlab functions here to extract spectrograms provide mirrored spectrograms (along the freq axis). This has been fixed in later models where we chop the spectrograms in half before feeding them into the network.

TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022