Motion planning environment for Sampling-based Planners

Overview

Sampling-Based Motion Planners' Testing Environment

Python version CI Build docs Code style: black License DOI

Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quickly test different sampling-based algorithms for motion planning. sbp-env focuses on the flexibility of tinkering with different aspects of the framework, and had divided the main planning components into two categories (i) samplers and (ii) planners.

The focus of motion planning research had been mainly on (i) improving the sampling efficiency (with methods such as heuristic or learned distribution) and (ii) the algorithmic aspect of the planner using different routines to build a connected graph. Therefore, by separating the two components one can quickly swap out different components to test novel ideas.

Have a look at the documentations for more detail information. If you are looking for the previous code for the RRdT* paper it is now archived at soraxas/rrdt.

Installation

Optional

I recommend first creates a virtual environment with

# assumes python3 and bash shell
python -m venv sbp_env
source sbp_env/bin/activate

Install dependencies

You can install all the needed packages with pip.

pip install -r requirements.txt

There is also an optional dependency on klampt if you want to use the 3D simulator. Refer to its installation guide for details.

Quick Guide

You can get a detailed help message with

python main.py --help

but the basic syntax is

python main.py <PLANNER> <MAP> [options]

It will open a new window that display a map on it. Every white pixel is assumed to be free, and non-white pixels are obstacles. You will need to use your mouse to select two points on the map, the first will be set as the starting point and the second as the goal point.

Demos

Run maps with different available Planners

This repository contains a framework to performs quick experiments for Sampling-Based Planners (SBPs) that are implemented in Python. The followings are planners that had implemented and experimented in this framework.

Note that the commands shown in the respective demos can be customised with additional options. In fact, the actual command format used for the demonstrations is

python main.py <PLANNER> maps/room1.png start <sx>,<sy> goal <sx>,<sy> -vv

to have a fix set of starting and goal points for consistent visualisation, but we omitted the start/goal options in the following commands for clarity.

RRdT*

python main.py rrdt maps/room1.png -vv

RRdT* Planner

RRT*

python main.py rrt maps/room1.png -vv

RRT* Planner

Bi-RRT*

python main.py birrt maps/room1.png -vv

Bi-RRT* Planner

Informed RRT*

python main.py informedrrt maps/room1.png -vv

Informed RRT* Planner

The red ellipse shown is the dynamic sampling area for Informed RRT*

Others

There are also some other planners included in this repository. Some are preliminary planner that inspired RRdT*, some are planners with preliminary ideas, and some are useful for debugging.

Reference to this repository

You can use the following citation if you use this repository for your research

@article{lai2021SbpEnv,
  doi = {10.21105/joss.03782},
  url = {https://doi.org/10.21105/joss.03782},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {66},
  pages = {3782},
  author = {Tin Lai},
  title = {sbp-env: A Python Package for Sampling-based Motion Planner and Samplers},
  journal = {Journal of Open Source Software}
}
Comments
  • question on (example) usage

    question on (example) usage

    According to the submitted paper, with sbp-env "one can quickly swap out different components to test novel ideas" and "validate ... hypothesis rapidly". However, from the examples in the documentation, it is unclear to me how I can obtain performance metrics on the planners when a run a test.

    Is there a way to save such metrics to a file or print them when running planners in sbp-env? If not, this might be a nice feature to implement in a future version. Otherwise, you could consider adding an example to the documentation on how to compare different planners in the same scenario.

    (this question is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 5
  • Path recognition issue

    Path recognition issue

    I tried some source, destination positions with the following command and there seems some issue in recognition of the path. python main.py rrt maps/4d.png --engine 4d

    Attaching screenshot below: Screenshot from 2021-10-07 00-43-15

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Python version compatibility with scipy

    Python version compatibility with scipy

    Mentioning the requirement of python version >= 3.8 in README would also help users the way it's done over here. Python versions < 3.8 are not compatible with scipy 1.6

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Suggestion to make installation easier

    Suggestion to make installation easier

    I was wondering why you have the following remark block in your installation instructions: image

    I think it would be easier to add those two packages to the file requirements_klampt.txt. That way they'll be installed automatically, it saves the user an extra action. Or is there any reason I'm missing why that shouldn't be done?

    opened by OlgerSiebinga 3
  • Exception after running the example from the documentation

    Exception after running the example from the documentation

    When I run the example from the quick start page in the documentation, an exception occurs.

    The command: python main.py rrt maps/room1.png

    The exception:

    Traceback (most recent call last):
      File "main.py", line 287, in <module>
        environment.run()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 198, in run
        self.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\visualiser.py", line 148, in terminates_hook
        self.env_instance.sampler.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 126, in __getattr__
        return object.__getattribute__(self.visualiser, attr)
    AttributeError: 'PygameEnvVisualiser' object has no attribute 'sampler'
    

    The exception only occurs after the simulation has finished so it seems like a minor problem. Although I'm not really sure what happens at env.py, line 126, in __getattr__ and why. So, I don't have a proposed fix.

    opened by OlgerSiebinga 2
  • invalid start and goal point can be specified with command-line interface

    invalid start and goal point can be specified with command-line interface

    When specifying a goal and start point in the commands line, it is possible to specify invalid points. Specifying an invalid start and goal will result in an infinite loop.

    For example, running: python main.py rrt maps\room1.png start 10,10 goal 15,15, will result in an infinite loop with the following GUI:

    image

    Expected behavior when supplying an invalid option would be an exception.

    opened by OlgerSiebinga 1
  • Test Instructions

    Test Instructions

    Though it's standard, adding instruction to run tests in the documentation might be helpful for users wanting to contribute.

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 1
  • Graph building of prm planner without user information

    Graph building of prm planner without user information

    The graph building method in the prm planner (build_graph() in prmPlanner.py) can take quite some time when a large number of nodes is used. However, the user is not notified that the planner is still processing data. The first time I encountered this, I suspected the software got stuck in an infinite loop because the window was not responding anymore. I think this can be easily fixed by adding a tqdm bar in the build_graph() method (at line 83)

    (this suggestion is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 1
  • Skip-optimality Problem

    Skip-optimality Problem

    Hi 1.I am wonderingt that the parameter (use_rtree)in choose_least_cost_parent() function and rewire() funtion (RRT). Is it no longer necessary because we use numpy's calculation method? 2. When i run the informedrrt algorithm, the ellipse display of the graphic drawing does not appear as shown in the document. How can it be displayed? I'm sorry to interrupt you from your busy schedule.

    opened by Jiawei-00 7
Releases(v2.0.1)
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022