ObjectDetNet is an easy, flexible, open-source object detection framework

Overview

Getting started with the ObjectDetNet

ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resume & prototype training sessions, run inference and flexibly work with checkpoints in a production grade environment.

Quick Start

Copy and paste this into your command line

#run in docker 
docker run --rm -it --init  --runtime=nvidia  --ipc=host  -e NVIDIA_VISIBLE_DEVICES=0 buffalonoam/zazu-image:0.3 bash

mkdir data
cd data
git clone https://github.com/dataloop-ai/tiny_coco.git
cd ..
git clone https://github.com/dataloop-ai/ObjectDetNet.git
cd ObjectDetNet
python main.py --train

After training just run:

python main.py --predict 
# OR 
python main.py --predict_single
# to predict a single item

To change the data you run on or the parameters of your model just update the example_checkpoint.pt file!

At the core of the ObjectDetNet framework is the checkpoint object. The checkpoint object is a json, pt or json styled file to be loaded into python as a dictionary. Checkpoint objects aren't just used for training, but also necessary for running inference. Bellow is an example of how a checkpoint object might look.

├── {} devices
│   ├── {} gpu_index
│       ├── 0
├── {} model_specs
│   ├── {} name
│       ├── retinanet
│   ├── {} training_configs
│       ├── {} depth
│           ├── 152
│       ├── {} input_size
│       ├── {} learning_rate
│   ├── {} data
│       ├── {} home_path
│       ├── {} annotation_type
│           ├── coco
│       ├── {} dataset_name
├── {} hp_values
│       ├── {} learning_rate
│       ├── {} tuner/epochs
│       ├── {} tuner/initial_epoch
├── {} labels
│       ├── {} 0
│           ├── Rodent
│       ├── {} 1
│       ├── {} 2
├── {} metrics
│       ├── {} val_accuracy
│           ├── 0.834
├── {} model
├── {} optimizer
├── {} scheduler
├── {} epoch
│       ├── 18

For training your checkpoint dictionary must have the following keys:

  • device - gpu index for which to convert all tensors
  • model_specs - contains 3 fields
    1. name
    2. training_configs
    3. data

To resume training you'll also need:

  • model - contains state of model weights
  • optimizer - contains state of optimizer
  • scheduler - contains state of scheduler
  • epoch - to know what epoch to start from

To run inference your checkpoint will need:

  • model_specs
  • labels

If you'd like to customize by adding your own model, check out Adding a Model

Feel free to reach out with any questions

WeChat: BuffaloNoam
Line: buffalonoam
WhatsApp: +972524226459

Refrences

Thank you to these repositories for their contributions to the ObjectDetNet

Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022