Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Related tags

Deep LearningSDR
Overview

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference

This repo is the implementation for SDR.

 

Tested environment

  • Python 3.7
  • PyTorch 1.7
  • CUDA 11.0

Lower CUDA and PyTorch versions should work as well.

 

Contents

License, Security, support and code of conduct specifications are under the Instructions directory.  

Installation

Run

bash instructions/installation.sh 

 

Datasets

The published datasets are:

  • Video games
    • 21,935 articles
    • Expert annotated test set. 90 articles with 12 ground-truth recommendations.
    • Examples:
      • Grand Theft Auto - Mafia
      • Burnout Paradise - Forza Horizon 3
  • Wines
    • 1635 articles
    • Crafted by a human sommelier, 92 articles with ~10 ground-truth recommendations.
    • Examples:
      • Pinot Meunier - Chardonnay
      • Dom Pérignon - Moët & Chandon

For more details and direct download see Wines and Video Games.

 

Training

The training process downloads the datasets automatically.

python sdr_main.py --dataset_name video_games

The code is based on PyTorch-Lightning, all PL hyperparameters are supported. (limit_train/val/test_batches, check_val_every_n_epoch etc.)

Tensorboard support

All metrics are being logged automatically and stored in

SDR/output/document_similarity/SDR/arch_SDR/dataset_name_<dataset>/<time_of_run>

Run tesnroboard --logdir=<path> to see the the logs.

 

Inference

The hierarchical inference described in the paper is implemented as a stand-alone service and can be used with any backbone algorithm (models/reco/hierarchical_reco.py).

 

python sdr_main.py --dataset_name <name> --resume_from_checkpoint <checkpoint> --test_only

Results

Citing & Authors

If you find this repository or the annotated datasets helpful, feel free to cite our publication -

SDR: Self-Supervised Document-to-Document Similarity Ranking viaContextualized Language Models and Hierarchical Inference

 @misc{ginzburg2021selfsupervised,
     title={Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference}, 
     author={Dvir Ginzburg and Itzik Malkiel and Oren Barkan and Avi Caciularu and Noam Koenigstein},
     year={2021},
     eprint={2106.01186},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}

Contact: Dvir Ginzburg, Itzik Malkiel.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022