Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Related tags

Deep LearningSEED
Overview

SEED

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

@Article{fang2020seed,
  author  = {Fang, Zhiyuan and Wang, Jianfeng and Wang, Lijuan and Zhang, Lei and Yang, Yezhou and Liu, Zicheng},
  title   = {SEED: Self-supervised Distillation For Visual Representation},
  journal = {International Conference on Learning Representations},
  year    = {2021},
}

Introduction

This paper is concerned with self-supervised learning for small models. The problem is motivated by our empirical studies that while the widely used contrastive self-supervised learning method has shown great progress on large model training, it does not work well for small models. To address this problem, we propose a new learning paradigm, named SElf-SupErvised Distillation (SEED), where we leverage a larger network (as Teacher) to transfer its representational knowledge into a smaller architecture (as Student) in a self-supervised fashion. Instead of directly learning from unlabeled data, we train a student encoder to mimic the similarity score distribution inferred by a teacher over a set of instances. We show that SEED dramatically boosts the performance of small networks on downstream tasks. Compared with self-supervised baselines, SEED improves the top-1 accuracy from 42.2% to 67.6% on EfficientNet-B0 and from 36.3% to 68.2% on MobileNetV3-Large on the ImageNet-1k dataset. SEED improves the ResNet-50 from 67.4% to 74.3% from the previous MoCo-V2 baseline. image

Preperation

Note: This repository does not contain the ImageNet dataset building, please refer to MoCo-V2 for the enviromental setting & dataset preparation. Be careful if you use FaceBook's ImageNet dataset implementation as the provided dataloader here is to handle TSV ImageNet source.

Self-Supervised Distillation Training

SWAV's 400_ep ResNet-50 model as Teacher architecture for a Student EfficientNet-b1 model with multi-view strategies. Place the pre-trained checkpoint in ./output directory. Remember to change the parameter name in the checkpoint as some module provided by SimCLR, MoCo-V2 and SWAV are inconsistent with regular PyTorch implementations. Here we provide the pre-trained SWAV/MoCo-V2/SimCLR Pre-trained checkpoints, but all credits belong to them.

Teacher Arch. SSL Method Teacher SSL-epochs Link
ResNet-50 MoCo-V1 200 URL
ResNet-50 SimCLR 200 URL
ResNet-50 MoCo-V2 200 URL
ResNet-50 MoCo-V2 800 URL
ResNet-50 SWAV 800 URL
ResNet-101 MoCo-V2 200 URL
ResNet-152 MoCo-V2 200 URL
ResNet-152 MoCo-V2 800 URL
ResNet-50X2 SWAV 400 URL
ResNet-50X4 SWAV 400 URL
ResNet-50X5 SWAV 400 URL

To conduct the training one GPU on single Node using Distributed Training:

python -m torch.distributed.launch --nproc_per_node=1 main_small-patch.py \
       -a efficientnet_b1 \
       -k resnet50 \
       --teacher_ssl swav \
       --distill ./output/swav_400ep_pretrain.pth.tar \
       --lr 0.03 \
       --batch-size 16 \
       --temp 0.2 \
       --workers 4 
       --output ./output \
       --data [your TSV imagenet-folder with train folders]

Conduct linear evaluations on ImageNet-val split:

python -m torch.distributed.launch --nproc_per_node=1  main_lincls.py \
       -a efficientnet_b0 \
       --lr 30 \
       --batch-size 32 \
       --output ./output \ 
       [your TSV imagenet-folder with val folders]

Checkpoints by SEED

Here we provide some pre-trained checkpoints after distillation by SEED. Note: the 800 epcohs one are trained with small-view strategies and have better performances.

Student-Arch. Teacher-Arch. Teacher SSL Student SEED-epochs Link
ResNet-18 ResNet-50 MoCo-V2 200 URL
ResNet-18 ResNet-50W2 SWAV 400 URL
MobileV3-Large ResNet-50 MoCo-V2 200 URL
EfficientNet-B0 ResNet-50W4 SWAV 400 URL
EfficientNet-B0 ResNet-50W2 SWAV 800 URL
EfficientNet-B1 ResNet-50 SWAV 200 URL
EfficientNet-B1 ResNet-152 SWAV 200 URL
ResNet-50 ResNet-50W4 SWAV 400 URL

Glance of the Performances

ImageNet-1k test accuracy (%) using KNN and linear classification for multiple students and MoCov2 pre-trained deeper teacher architectures. ✗ denotes MoCo-V2 self-supervised learning baselines before distillation. * indicates using a deeper teacher encoder pre-trained by SWAV, where additional small-patches are also utilized during distillation and trained for 800 epochs. K denotes Top-1 accuracy using KNN. T-1 and T-5 denote Top-1 and Top-5 accuracy using linear evaluation. First column shows Top-1 Acc. of Teacher network. First row shows the supervised performances of student networks.

Acknowledge

This implementation is largely originated from: MoCo-V2. Thanks SWAV and SimCLR for the pre-trained SSL checkpoints.

This work is done jointly with ASU-APG lab and Microsoft Azure-Florence Group. Thanks my collaborators.

License

SEED is released under the MIT license.

Owner
Jacob
Jacob
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022