Scalable machine learning based time series forecasting

Overview

mlforecast

Scalable machine learning based time series forecasting.

CI Lint Python PyPi conda-forge codecov License

Install

PyPI

pip install mlforecast

Optional dependencies

If you want more functionality you can instead use pip install mlforecast[extra1,extra2,...]. The current extra dependencies are:

  • aws: adds the functionality to use S3 as the storage in the CLI.
  • cli: includes the validations necessary to use the CLI.
  • distributed: installs dask to perform distributed training. Note that you'll also need to install either LightGBM or XGBoost.

For example, if you want to perform distributed training through the CLI using S3 as your storage you'll need all three extras, which you can get using: pip install mlforecast[aws,cli,distributed].

conda-forge

conda install -c conda-forge mlforecast

Note that this installation comes with the required dependencies for the local interface. If you want to:

  • Use s3 as storage: conda install -c conda-forge s3path
  • Perform distributed training: conda install -c conda-forge dask and either LightGBM or XGBoost.

How to use

The following provides a very basic overview, for a more detailed description see the documentation.

Programmatic API

Store your time series in a pandas dataframe with an index named unique_id that identifies each time serie, a column ds that contains the datestamps and a column y with the values.

from mlforecast.utils import generate_daily_series

series = generate_daily_series(20)
display_df(series.head())
unique_id ds y
id_00 2000-01-01 00:00:00 0.264447
id_00 2000-01-02 00:00:00 1.28402
id_00 2000-01-03 00:00:00 2.4628
id_00 2000-01-04 00:00:00 3.03552
id_00 2000-01-05 00:00:00 4.04356

Then create a TimeSeries object with the features that you want to use. These include lags, transformations on the lags and date features. The lag transformations are defined as numba jitted functions that transform an array, if they have additional arguments you supply a tuple (transform_func, arg1, arg2, ...).

from mlforecast.core import TimeSeries
from window_ops.expanding import expanding_mean
from window_ops.rolling import rolling_mean

ts = TimeSeries(
    lags=[7, 14],
    lag_transforms={
        1: [expanding_mean],
        7: [(rolling_mean, 7), (rolling_mean, 14)]
    },
    date_features=['dayofweek', 'month']
)
ts
TimeSeries(freq=<Day>, transforms=['lag-7', 'lag-14', 'expanding_mean_lag-1', 'rolling_mean_lag-7_window_size-7', 'rolling_mean_lag-7_window_size-14'], date_features=['dayofweek', 'month'], num_threads=8)

Next define a model. If you want to use the local interface this can be any regressor that follows the scikit-learn API. For distributed training there are LGBMForecast and XGBForecast.

from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor(random_state=0)

Now instantiate your forecast object with the model and the time series. There are two types of forecasters, Forecast which is local and DistributedForecast which performs the whole process in a distributed way.

from mlforecast.forecast import Forecast

fcst = Forecast(model, ts)

To compute the features and train the model using them call .fit on your Forecast object.

fcst.fit(series)
Forecast(model=RandomForestRegressor(random_state=0), ts=TimeSeries(freq=<Day>, transforms=['lag-7', 'lag-14', 'expanding_mean_lag-1', 'rolling_mean_lag-7_window_size-7', 'rolling_mean_lag-7_window_size-14'], date_features=['dayofweek', 'month'], num_threads=8))

To get the forecasts for the next 14 days call .predict(14) on the forecaster. This will update the target with each prediction and recompute the features to get the next one.

predictions = fcst.predict(14)

display_df(predictions.head())
unique_id ds y_pred
id_00 2000-08-10 00:00:00 5.24484
id_00 2000-08-11 00:00:00 6.25861
id_00 2000-08-12 00:00:00 0.225484
id_00 2000-08-13 00:00:00 1.22896
id_00 2000-08-14 00:00:00 2.30246

CLI

If you're looking for computing quick baselines, want to avoid some boilerplate or just like using CLIs better then you can use the mlforecast binary with a configuration file like the following:

!cat sample_configs/local.yaml
data:
  prefix: data
  input: train
  output: outputs
  format: parquet
features:
  freq: D
  lags: [7, 14]
  lag_transforms:
    1: 
    - expanding_mean
    7: 
    - rolling_mean:
        window_size: 7
    - rolling_mean:
        window_size: 14
  date_features: ["dayofweek", "month", "year"]
  num_threads: 2
backtest:
  n_windows: 2
  window_size: 7
forecast:
  horizon: 7
local:
  model:
    name: sklearn.ensemble.RandomForestRegressor
    params:
      n_estimators: 10
      max_depth: 7

The configuration is validated using FlowConfig.

This configuration will use the data in data.prefix/data.input to train and write the results to data.prefix/data.output both with data.format.

data_path = Path('data')
data_path.mkdir()
series.to_parquet(data_path/'train')
!mlforecast sample_configs/local.yaml
Split 1 MSE: 0.0251
Split 2 MSE: 0.0180
list((data_path/'outputs').iterdir())
[PosixPath('data/outputs/valid_1.parquet'),
 PosixPath('data/outputs/valid_0.parquet'),
 PosixPath('data/outputs/forecast.parquet')]
Comments
  • mlforecast for multivariate time series analysis

    mlforecast for multivariate time series analysis

    Hello,

    I want to use "mlforecast" library for my Multivariate Time Series problem and I want to know how could I add new features, like holidays or temperature, to the dataset besides 'lags' and 'date_features'. Below is flow configuration:

    `fcst = Forecast(
        models=model,
        freq='W-MON',
        lags=[1,2,3,4,5,6,7,8],
        date_features=['month', 'week']
    )
    `
    

    Is there a way to add exogenous variables to the training process? I could not find relevant information to be able to do this.

    Thank you!

    opened by MariaBocsa 5
  • What's the purpose of using scale_factor?

    What's the purpose of using scale_factor?

    I noticed in the docs under the "Custom predictions" section it references using a scale_factor - I'm just wondering what the purpose of this would be?

    Is it the same purpose as the alpha here?: https://www.kaggle.com/code/lemuz90/m5-mlforecast/notebook

    I'm assuming that it's some kind of post prediction adjustment to improve accuracy but I'm keen to hear the thought process behind it.

    opened by TPreece101 5
  • [FEAT] Add step size argument to cross validation method

    [FEAT] Add step size argument to cross validation method

    Description

    This PR adds the step_size argument to the cross validation method. The argument controls the size between each cross validation window.

    Checklist:

    • [x] This PR has a meaningful title and a clear description.
    • [x] The tests pass.
    • [x] All linting tasks pass.
    • [x] The notebooks are clean.
    feature 
    opened by FedericoGarza 4
  • [FIX] delete cla.yml

    [FIX] delete cla.yml

    Description

    CLA agreement will now be handled by https://cla-assistant.io/ Checklist:

    • [ ] This PR has a meaningful title and a clear description.
    • [ ] The tests pass.
    • [ ] All linting tasks pass.
    • [ ] The notebooks are clean.
    opened by FedericoGarza 3
  • add MLForecast.from_cv

    add MLForecast.from_cv

    Description

    Removes the fit_on_all argument from LightGBMCV and introduces a constructor MLForecast.from_cv that builds the forecast object from a trained cv with the best iteration, features and parameters from cv object. Also makes some small changes to keep the structure of the input dataframe, which are:

    • If the id is not the index the predict method from all forecasts returns it as a column (previously it was always the index)
    • The cv_preds_ argument of LightGBMCV had id and time as a multiindex, now they have the same structure as the input df.

    Checklist:

    • [x] This PR has a meaningful title and a clear description.
    • [x] The tests pass.
    • [x] All linting tasks pass.
    • [x] The notebooks are clean.
    breaking 
    opened by jmoralez 2
  • remove dashes from feature names

    remove dashes from feature names

    Description

    Removes dashes from feature names, e.g. lag-7 becomes lag7.

    Checklist:

    • [ ] This PR has a meaningful title and a clear description.
    • [ ] The tests pass.
    • [ ] All linting tasks pass.
    • [ ] The notebooks are clean.
    breaking 
    opened by jmoralez 2
  • Unable to import Forecast from mlforecast

    Unable to import Forecast from mlforecast

    Description

    Unable to import Forecast from mlforecast

    Reproducible example

    # code goes here
    from mlforecast import Forecast
    
    
    ImportError: cannot import name 'Forecast' from 'mlforecast' (/home//mambaforge/envs/dev/lib/python3.7/site-packages/mlforecast/__init__.py)
    # Stacktrace
    

    Environment info

    python=3.7 pip installlation mlforecast

    Package version: mlforecast=0.2.0

    Additional information

    opened by iki77 2
  • nb Forecast doens't run in latest pypi version

    nb Forecast doens't run in latest pypi version

    This nb doesn't work with latest pypi mlforecast version (installing via pip install mlforecast, version 0.2.0) https://github.com/Nixtla/mlforecast/blob/6ac01ec16e1da2d04ca8ea9e4d4a2ed173f7c534/nbs/forecast.ipynb

    To make it work, I had to specifically pass the same package as in github: pip install git+https://github.com/Nixtla/mlforecast.git#egg=mlforecast

    opened by Gabrielcidral1 2
  • sort only ds and y columns on fit

    sort only ds and y columns on fit

    Description

    Since the input for the transformations has to be sorted we used to sort the whole dataframe, however this can be very inefficient when there are many dynamic columns. This PR sorts using only the ds and y columns before constructing the GroupedArray thus keeping the peak memory usage constant with respect to the number of dynamic features.

    Checklist:

    • [x] This PR has a meaningful title and a clear description.
    • [x] The tests pass.
    • [ ] There isn't a decrease in the tests coverage.
    • [x] All linting tasks pass.
    • [x] The notebooks are clean.
    • [x] If this modifies the docs, you've made sure that they were updated correctly.
    opened by jmoralez 2
  • Bug:  When using Forecast.backtest on a series with freq='W', y_pred contains null values

    Bug: When using Forecast.backtest on a series with freq='W', y_pred contains null values

    Code to reproduce:

    import pandas as pd
    import numpy as np
    from sklearn.linear_model import LinearRegression
    from mlforecast.core import TimeSeries
    from mlforecast.forecast import Forecast
    
    #Generate weekly data
    #https://towardsdatascience.com/forecasting-with-machine-learning-models-95a6b6579090
    
    rng = np.random.RandomState(90)
    serie_length = 52 * 4  #4 years' weekly data
    dates = pd.date_range('2000-01-01', freq='W', periods=serie_length, name='ds')
    y = dates.dayofweek + rng.randint(-1, 2, size=dates.size)
    data = pd.DataFrame({'y': y.astype(np.float64)}, index=dates)
    #data.plot(marker='.', figsize=(20, 6));
    
    train_mlfcst = data.reset_index()[['ds', 'y']]
    train_mlfcst.index = pd.Index(np.repeat(0, data.shape[0]), name='unique_id')
    
    backtest_fcst = Forecast(
        LinearRegression(fit_intercept=False), TimeSeries(lags=[4, 8])
    )
    backtest_results = backtest_fcst.backtest(train_mlfcst, n_windows=2, window_size=52)
    
    result1 = next(backtest_results)
    result1
    
    	ds	y	y_pred
    unique_id			
    0	2001-12-30	6.0	5.105716
    0	2002-01-06	5.0	5.026820
    0	2002-01-13	7.0	4.640784
    0	2002-01-20	5.0	6.145316
    0	2002-01-27	6.0	4.746834
    0	2002-02-03	6.0	4.635672
    0	2002-02-10	7.0	4.271653
    0	2002-02-17	7.0	NaN
    0	2002-02-24	7.0	NaN
    0	2002-03-03	5.0	NaN
    0	2002-03-10	5.0	NaN
    0	2002-03-17	7.0	NaN
    0	2002-03-24	7.0	NaN
    0	2002-03-31	5.0	NaN
    0	2002-04-07	7.0	NaN
    0	2002-04-14	5.0	NaN
    0	2002-04-21	6.0	NaN
    0	2002-04-28	5.0	NaN
    0	2002-05-05	7.0	NaN
    0	2002-05-12	7.0	NaN
    0	2002-05-19	5.0	NaN
    0	2002-05-26	6.0	NaN
    0	2002-06-02	5.0	NaN
    0	2002-06-09	6.0	NaN
    0	2002-06-16	5.0	NaN
    0	2002-06-23	6.0	NaN
    0	2002-06-30	6.0	NaN
    0	2002-07-07	6.0	NaN
    0	2002-07-14	7.0	NaN
    0	2002-07-21	5.0	NaN
    0	2002-07-28	6.0	NaN
    0	2002-08-04	6.0	NaN
    0	2002-08-11	5.0	NaN
    0	2002-08-18	7.0	NaN
    0	2002-08-25	7.0	NaN
    0	2002-09-01	6.0	NaN
    0	2002-09-08	5.0	NaN
    0	2002-09-15	6.0	NaN
    0	2002-09-22	5.0	NaN
    0	2002-09-29	5.0	NaN
    0	2002-10-06	6.0	NaN
    0	2002-10-13	5.0	NaN
    0	2002-10-20	6.0	NaN
    0	2002-10-27	5.0	NaN
    0	2002-11-03	6.0	NaN
    0	2002-11-10	5.0	NaN
    0	2002-11-17	7.0	NaN
    0	2002-11-24	7.0	NaN
    0	2002-12-01	6.0	NaN
    0	2002-12-08	5.0	NaN
    0	2002-12-15	5.0	NaN
    0	2002-12-22	6.0	NaN
    
    opened by AMKiller 2
  • Fix parquet writes for distributed in cli

    Fix parquet writes for distributed in cli

    Description

    A recent change in dask created an error when trying to write a dask dataframe built from futures to parquet. This solves that issue.

    Checklist:

    • [x] This PR has a meaningful title and a clear description.
    • [x] The tests pass.
    • [x] There isn't a decrease in the tests coverage.
    • [x] All linting tasks pass.
    • [x] The notebooks are clean.
    • [x] If this modifies the docs, you've made sure that they were updated correctly.
    opened by jmoralez 2
  • Support one model per horizon approach

    Support one model per horizon approach

    Description

    We currently support only the recursive strategy where the same model is used to predict over the complete horizon and the model's predictions are used to update the target and recompute the features.

    This adds a max_horizon argument to MLForecast.fit to indicate that it should train that many models and use each to predict its corresponding horizon when calling MLForecast.predict.

    Checklist:

    • [x] This PR has a meaningful title and a clear description.
    • [x] The tests pass.
    • [x] All linting tasks pass.
    • [x] The notebooks are clean.
    feature 
    opened by jmoralez 1
Releases(v0.4.0)
  • v0.4.0(Nov 25, 2022)

    What's Changed

    • rename Forecast to MLForecast by @jmoralez in https://github.com/Nixtla/mlforecast/pull/63

    Full Changelog: https://github.com/Nixtla/mlforecast/compare/v0.3.1...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.1(Nov 9, 2022)

    What's Changed

    • fix unused arguments by @jmoralez in https://github.com/Nixtla/mlforecast/pull/61

    Full Changelog: https://github.com/Nixtla/mlforecast/compare/v0.3.0...v0.3.1

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Nov 1, 2022)

    What's Changed

    • raise error when serie is too short for backtest by @jmoralez in https://github.com/Nixtla/mlforecast/pull/32
    • allow models list by @jmoralez (#34, #36)
    • [FEAT] Allow used by GitHub section hardcoding lib name by @FedericoGarza in https://github.com/Nixtla/mlforecast/pull/37
    • [FIX] Add black as a development dependency by @FedericoGarza in https://github.com/Nixtla/mlforecast/pull/38
    • rename backtest to cross_validation and return single dataframe by @jmoralez in https://github.com/Nixtla/mlforecast/pull/41
    • Remove TimeSeries from Forecast constructor by @jmoralez in https://github.com/Nixtla/mlforecast/pull/44
    • allow passing column names as arguments. allow ds to be int by @jmoralez in https://github.com/Nixtla/mlforecast/pull/45
    • add LightGBMCV by @jmoralez in https://github.com/Nixtla/mlforecast/pull/48
    • support applying differences to series by @jmoralez in https://github.com/Nixtla/mlforecast/pull/52
    • allow functions as date features by @jmoralez in https://github.com/Nixtla/mlforecast/pull/57
    • Improve docs by @jmoralez in https://github.com/Nixtla/mlforecast/pull/59

    New Contributors

    • @FedericoGarza made their first contribution in https://github.com/Nixtla/mlforecast/pull/37

    Full Changelog: https://github.com/Nixtla/mlforecast/compare/v0.2.0...v0.3.0

    Source code(tar.gz)
    Source code(zip)
Owner
Nixtla
Open Source Time Series Forecasting
Nixtla
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022