Code from PropMix, accepted at BMVC'21

Related tags

Deep LearningPropMix
Overview

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels

This repository is the official implementation of Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels (BMVC 2021).

Authors: Filipe R. Cordeiro; Vasileios Belagiannis, Ian Reid and Gustavo Carneiro

Illustration

Requirements

  • This codebase is written for python3.
  • To install necessary python packages, run pip install -r requirements.txt.

Training and Evaluating

The pipeline for training with PropMix is the following:

  1. Self-supervised pretrain.

In our paper we use SimCLR for most of the datasets. We use moco-v2 to pre-train an InceptionResNetV2 on Webvision. Other self-supervised methods can be used as well.

If you use SimCLR, run:

python simclr.py --config_env configs/env.yml --config_exp configs/pretext/<config_file.yml> --cudaid 0

  1. Clustering

python scan.py --config_env configs/env.yml --config_exp configs/scan/<config_file.yml> --cudaid 0

  1. Train the model (using the pretraining from steps 1 and 2)

For CIFAR-10/CIFAR-100:

python propmix.py --r [0.2/0.5/0.8/0.9] --noise_mode [sym/asym] --config_env configs/env.yml --config_exp configs/propmix/<config_file.yml> --cudaid 0

Add --nopt if you wish to train from scratch, without the self-supervised pretrain, from steps 1 and 2. Add --strong_aug to use strong augmentation. Recommended for high noise rates.

License and Contributing

  • This README is formatted based on paperswithcode.
  • This project is licensed under the terms of the MIT license.
  • Feel free to post issues via Github.

Cite PropMix
If you find the code useful in your research, please consider citing our paper:

@article{cordeiroPropMix2021,
  title={PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels},
  author={Cordeiro, F. R. and Belagiannis, Vasileios and Reid, Ian and Carneiro, Gustavo},
  journal={The 32nd British Machine Vision Conference},
  volume={?},
  year={2021}
}

Contact

Please contact [email protected] if you have any question on the codes.

Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022