PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Overview

Python 2.7 Python 3.6

Dancing to Music

PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Paper

Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang, Jan Kautz
Dancing to Music Neural Information Processing Systems (NeurIPS) 2019
[Paper] [YouTube] [Project] [Blog] [Supp]

Example Videos

  • Beat-Matching
    1st row: generated dance sequences, 2nd row: music beats, 3rd row: kinematics beats

  • Multimodality
    Generate various dance sequences with the same music and the same initial pose.

  • Long-Term Generation
    Seamlessly generate a dance sequence with arbitrary length.

  • Photo-Realisitc Videos
    Map generated dance sequences to photo-realistic videos.

Train Decomposition

python train_decomp.py --name Decomp

Train Composition

python train_comp.py --name Decomp --decomp_snapshot DECOMP_SNAPSHOT

Demo

python demo.py --decomp_snapshot DECOMP_SNAPSHOT --comp_snapshot COMP_SNAPSHOT --aud_path AUD_PATH --out_file OUT_FILE --out_dir OUT_DIR --thr THR
  • Flags

    • aud_path: input .wav file
    • out_file: location of output .mp4 file
    • out_dir: directory of output frames
    • thr: threshold based on motion magnitude
    • modulate: whether to do beat warping
  • Example

python demo.py -decomp_snapshot snapshot/Stage1.ckpt --comp_snapshot snapshot/Stage2.ckpt --aud_path demo/demo.wav --out_file demo/out.mp4 --out_dir demo/out_frame

Citation

If you find this code useful for your research, please cite our paper:

@inproceedings{lee2019dancing2music,
  title={Dancing to Music},
  author={Lee, Hsin-Ying and Yang, Xiaodong and Liu, Ming-Yu and Wang, Ting-Chun and Lu, Yu-Ding and Yang, Ming-Hsuan and Kautz, Jan},
  booktitle={NeurIPS},
  year={2019}
}

License

Copyright (C) 2020 NVIDIA Corporation. All rights reserved. This work is made available under NVIDIA Source Code License (1-Way Commercial). To view a copy of this license, visit https://nvlabs.github.io/Dancing2Music/LICENSE.txt.

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Facebook Research 605 Jan 02, 2023
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022