Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Overview

Segmenter: Transformer for Semantic Segmentation

Figure 1 from paper

Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and Cordelia Schmid.

*Equal Contribution

Installation

Define os environment variables pointing to your checkpoint and dataset directory, put in your .bashrc:

export DATASET=/path/to/dataset/dir

Install PyTorch 1.9 then pip install . at the root of this repository.

To download ADE20K, use the following command:

python -m segm.scripts.prepare_ade20k $DATASET

Model Zoo

We release models with a Vision Transformer backbone initialized from the improved ViT models.

ADE20K

Segmenter models with ViT backbone:

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-T-Mask/16 38.1 / 38.8 7M 512x512 52.4 model config log
Seg-S-Mask/16 45.3 / 46.9 27M 512x512 34.8 model config log
Seg-B-Mask/16 48.5 / 50.0 106M 512x512 24.1 model config log
Seg-L-Mask/16 51.3 / 53.2 334M 512x512 10.6 model config log
Seg-L-Mask/16 51.8 / 53.6 334M 640x640 - model config log

Segmenter models with DeiT backbone:

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-B/16 47.1 / 48.1 87M 512x512 27.3 model config log
Seg-B-Mask/16 48.7 / 50.1 106M 512x512 24.1 model config log

Pascal Context

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-L-Mask/16 58.1 / 59.0 334M 480x480 - model config log

Inference

Download one checkpoint with its configuration in a common folder, for example seg_tiny_mask.

You can generate segmentation maps from your own data with:

python -m segm.inference --model-path seg_tiny_mask/checkpoint.pth -i images/ -o segmaps/ 

To evaluate on ADE20K, run the command:

# single-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --singlescale
# multi-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --multiscale

Train

Train Seg-T-Mask/16 on ADE20K on a single GPU:

python -m segm.train --log-dir seg_tiny_mask --dataset ade20k \
  --backbone vit_tiny_patch16_384 --decoder mask_transformer

To train Seg-B-Mask/16, simply set vit_base_patch16_384 as backbone and launch the above command using a minimum of 4 V100 GPUs (~12 minutes per epoch) and up to 8 V100 GPUs (~7 minutes per epoch). The code uses SLURM environment variables.

Logs

To plot the logs of your experiments, you can use

python -m segm.utils.logs logs.yml

with logs.yml located in utils/ with the path to your experiments logs:

root: /path/to/checkpoints/
logs:
  seg-t: seg_tiny_mask/log.txt
  seg-b: seg_base_mask/log.txt

Video Segmentation

Zero shot video segmentation on DAVIS video dataset with Seg-B-Mask/16 model trained on ADE20K.

BibTex

@article{strudel2021,
  title={Segmenter: Transformer for Semantic Segmentation},
  author={Strudel, Robin and Garcia, Ricardo and Laptev, Ivan and Schmid, Cordelia},
  journal={arXiv preprint arXiv:2105.05633},
  year={2021}
}

Acknowledgements

The Vision Transformer code is based on timm library and the semantic segmentation training and evaluation pipeline is using mmsegmentation.

Owner
PhD student at Ecole Normale Supérieure and INRIA Paris
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022