통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Related tags

Deep LearningLucas
Overview


Lucas

Hits


coded by linux shell

목차


Patch Note 📜


Team member

Contributors/People

ympark gbhwang cbchun
https://github.com/pym7857 https://github.com/gbhwang https://github.com/bermmie1000
  • You can see team member and github profile
  • You should probably find team member's lastest project



Requirements

  • python 3.xx



Mac버전 CookieCutter (autoenv)

🚫 주의
$> brew install autoenv 로 다운로드 받아서 실행시키면 터미널 고장납니다.
반드시 autoenv Github 에서 git clone 으로 다운받아 주세요. (현재 시점 21.3.24)

⚠️ mac버전만 소개합니다.

1. How to Install autoenv

$ git clone git://github.com/inishchith/autoenv.git ~/.autoenv

2.폴더 진입 시, activate 구현하기

$ echo 'source ~/.autoenv/activate.sh' >> ~/.zshrc
$ source ~/.zshrc

🔔 하단의.env파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env 파일
echo "HELLO autoenv"
{
    source .dev-venv/bin/activate
    echo "virtual env is successfully activated!"
} ||
{
    echo "[virtual env start] is failed!"
}

.env파일 설정 후 첫 폴더 진입시 .env파일을 신뢰하고 실행할지 않을 지에 대한 동의가 나타납니다. autoenv 이 부분은 .env파일이 악의적으로 변경되었을때 사용자에게 알리기 위해서 있기 때문에 즐거운 마음으로 Y를 눌러줍시다.
이제 정상적으로 가상환경이 activate된 것을 확인할 수 있습니다.

3.폴더 탈출 시, deactivate 구현하기

$> vi ~/.zshrc

마지막줄에 다음의 명령어를 추가해줍니다.

export AUTOENV_ENABLE_LEAVE='"enabled"' 

🔔 하단의.env.leave파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env.leave 파일
echo "BYEBYE"
{
    deactivate
    echo "virtual env is successfully deactivated!"
} ||
{
    echo "[virtual env quit] is failed!"
}

.env.leave파일 설정 후 해당 폴더에서 나가면
정상적으로 가상환경이 deactivate 되는 것을 확인할 수 있습니다.

4.Alias 설정하기

echo 'alias cookie="bash [각자 컴퓨터의 상대경로/cookie_cutter_project_dir.sh]"' >> ~/.zshrc
ex) echo 'alias cookie="bash /Users/gbhwang/Desktop/Project/Test/Lucas/mac/cookie_cutter_project_dir.sh"' >> ~/.zshrc

맥 파일경로 확인법을 참고하여
각자 mac폴더안의 cookie_cutter_project_dir.sh 파일의 경로를 확인하여 zshrc에 넣어주시면 됩니다.

이렇게 하면 cookie 명령어 만으로 간단하게 스크립트를 실행시킬 수 있게 됩니다.
위와 같이 설정하면 cookie [프로젝트 생성할 경로] [프로젝트 이름] 명령어로 프로젝트를 생성할 수 있게 됩니다.

5.How to Use

$> cd "where-you-want"
$> git clone https://github.com/LS-ELLO/Lucas.git
$> cd Lucas
$> cd mac

$> cookie [where-you-want] [your-project-name]
ex) $> cookie . test111



Windows버전 CookieCutter (ps-autoenv)

도움 주신 규본님 감사합니다.
ps-autoenv를 사용합니다.

1.How to install ps-autoenv

Powershell 실행 (관리자 권한 실행)

PS> Install-Module ps-autoenv
PS> Add-Content $PROFILE @("`n", "import-module ps-autoenv")

2.Alias 설정하기 (git-bash)

참조

  1. C:/Program Files/Git/etc/profile.d/aliases.sh 파일을 관리자 권한으로 Text Editor에 실행시킵니다.

  2. 다음의 명령어를 추가합니다.
    alias cookie='bash cookie_cutter_project_dir.sh의 상대경로'
    ex) alias cookie='bash D:/Lucas/windows/cookie_cutter_project_dir.sh'

    (aliases.sh)

    # Some good standards, which are not used if the user
    # creates his/her own .bashrc/.bash_profile
    
    # --show-control-chars: help showing Korean or accented characters
    alias ls='ls -F --color=auto --show-control-chars'
    alias ll='ls -l'
    alias cookie='bash [where-your-cookie_cutter_project_dir.sh]'
    
    case "$TERM" in
    ...

3.How to Use

Git Bash 실행

bash> cd "where-this-repo-downloaded"
bash> cd windows
bash> cookie [where-you-want] [your-project-name]
ex) cookie . 1bot

Powershell 실행

PS> Import-Module ps-autoenv
PS> cd "where-your-cookiecutter-project"
ex. PS> cd "C:\Users\ympark4\Documents\1bot"
PS> press 'Y'
🚫 PSSecurityException 오류 발생할때

https://extbrain.tistory.com/118 를 참조해서 해결주세요.



The resulting directory structure

The directory structure of your new project looks like this:

├── LICENSE
├── Makefile
├── README.md          ← The top-level README for developers using this project.
├── data
│   ├── external       ← Data from third party sources.
│   ├── interim        ← Intermediate data that has been transformed.
│   ├── processed      ← The final, canonical data sets for modeling.
│   └── raw            ← The original, immutable data dump.
├── docs               ← A default Sphinx project; see sphinx-doc.org for details
├── models             ← Trained and serialized models, model predictions, or model summaries
├── notebooks          ← Jupyter notebooks. Naming convention is a number (for ordering), the creator's initials, and a short `-` delimited description, e.g. `1.0-jqp-initial-data-exploration`.
├── references         ← Data dictionaries, manuals, and all other explanatory materials.
├── reports            ← Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        ← Generated graphics and figures to be used in reporting
├── requirements.txt   ← The requirements file for reproducing the analysis environment, e.g. generated with `pip freeze > requirements.txt`
├── setup.py           ← makes project pip installable (pip install -e .) so src can be imported
├── src                ← Source code for use in this project.
│   ├── __init__.py  
│   ├── dataread      
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── features       
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── models     
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── visualization    
│   │   └── __init__.py
│   │   └── example.py
├── App               
│   ├── android       
│   ├── ios           
│   ├── lib            
│   │   └── models
│   │   └── main.dart
│
└── .gitignore        



Owner
ello
ello
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022