This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

Overview

Hybrid-Self-Attention-NEAT

Abstract

This repository contains the code to reproduce the results presented in the original paper.
In this article, we present a “Hybrid Self-Attention NEAT” method to improve the original NeuroEvolution of Augmenting Topologies (NEAT) algorithm in high-dimensional inputs. Although the NEAT algorithm has shown a significant result in different challenging tasks, as input representations are high dimensional, it cannot create a well-tuned network. Our study addresses this limitation by using self-attention as an indirect encoding method to select the most important parts of the input. In addition, we improve its overall performance with the help of a hybrid method to evolve the final network weights. The main conclusion is that Hybrid Self-Attention NEAT can eliminate the restriction of the original NEAT. The results indicate that in comparison with evolutionary algorithms, our model can get comparable scores in Atari games with raw pixels input with a much lower number of parameters.

NOTE: The original implementation of self-attention for atari-games, and the NEAT algorithm can be found here:
Neuroevolution of Self-Interpretable Agents: https://github.com/google/brain-tokyo-workshop/tree/master/AttentionAgent
Pure python library for the NEAT and other variations: https://github.com/ukuleleplayer/pureples

Execution

To use this work on your researches or projects you need:

  • Python 3.7
  • Python packages listed in requirements.txt

NOTE: The following commands are based on Ubuntu 20.04

To install Python:

First, check if you already have it installed or not.

python3 --version

If you don't have python 3.7 in your computer you can use the code below:

sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update
sudo apt-get install python3.7
sudo apt install python3.7-distutils

To install packages via pip install:

python3.7 -m pip install -r requirements.txt

To run this project on Ubuntu server:

You need to uncomment the following lines in experiments/configs/configs.py

_display = pyvirtualdisplay.Display(visible=False, size=(1400, 900))
_display.start()

And also install some system dependencies as well

apt-get install -y xvfb x11-utils

To train the model:

  • First, check the configuration you need. The default ones are listed in experiments/configs/.
  • We highly recommend increasing the number of population size, and the number of iterations to get better results.
  • Check the working directory to be: ~/Hybrid_Self_Attention_NEAT/
  • Run the runner.py as below:
python3.7 -m experiment.runner

NOTE: If you have limited resources (like RAM), you should decrease the number of iterations and instead use loops command

for i in {1..
   
    }; do python3.7 -m experiment.runner; done

   

To tune the model:

  • First, check you trained the model, and the model successfully saved in experiments/ as main_model.pkl
  • Run the tunner.py as below:
python3.7 -m experiment.tunner

NOTE: If you have limited resources (like RAM), you should decrease the number of iterations and instead use loops command

for i in {1..
   
    }; do python3.7 -m experiment.tunner; done

   

Citation

For attribution in academic contexts, please cite this work as:

@misc{khamesian2021hybrid,
    title           = {Hybrid Self-Attention NEAT: A novel evolutionary approach to improve the NEAT algorithm}, 
    author          = {Saman Khamesian and Hamed Malek},
    year            = {2021},
    eprint          = {2112.03670},
    archivePrefix   = {arXiv},
    primaryClass    = {cs.NE}
}
Owner
Saman Khamesian
Data Science Specialist at Mofid Securities
Saman Khamesian
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022