This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Overview

Neural RGB-D Surface Reconstruction

Paper | Project Page | Video

Neural RGB-D Surface Reconstruction
Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, Justus Thies
Arxiv Pre-print

This repository contains the code for the paper Neural RGB-D Surface Reconstruction, a novel approach for 3D reconstruction that combines implicit surface representations with neural radiance fields.

Installation

You can create a conda environment called neural_rgbd using:

conda env create -f environment.yaml
conda activate neural_rgbd

Make sure to clone the external Marching Cubes dependency and install it in the same environment:

cd external/NumpyMarchingCubes
python setup.py install

You can run an optimization using:

python optimize.py --config configs/
   
    .txt

   

Data

The data needs to be in the following format:


   
                # args.datadir in the config file
├── depth               # raw (real data) or ground truth (synthetic data) depth images (optional)
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── depth_filtered      # filtered depth images
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── depth_with_noise    # depth images with synthetic noise and artifacts (optional)
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── images              # RGB images
    ├── img0.png     
    ├── img1.png
    ├── img2.png
    ...
├── focal.txt           # focal length
├── poses.txt           # ground truth poses (optional)
├── trainval_poses.txt  # camera poses used for optimization

   

The dataloader is hard-coded to load depth maps from the depth_filtered folder. These depth maps have been generated from the raw ones (or depth_with_noise in the case of synthetic data) using the same bilateral filter that was used by BundleFusion. The method also works with the raw depth maps, but the results are slightly degraded.

The file focal.txt contains a single floating point value representing the focal length of the camera in pixels.

The files poses.txt and trainval_poses.txt contain the camera matrices in the format 4N x 4, where is the number of cameras in the trajectory. Like the NeRF paper, we use the OpenGL convention for the camera's coordinate system. If you run this code on ScanNet data, make sure to transform the poses to the OpenGL system, since ScanNet used a different convention.

You can also write your own dataloader. You can use the existing load_scannet.py as template and update load_dataset.py.

Citation

If you use this code in your research, please consider citing:

@misc{azinović2021neural,
      title={Neural RGB-D Surface Reconstruction}, 
      author={Dejan Azinović and Ricardo Martin-Brualla and Dan B Goldman and Matthias Nießner and Justus Thies},
      year={2021},
      eprint={2104.04532},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Further information

The code is largely based on the original NeRF code by Mildenhall et al. https://github.com/bmild/nerf

The Marching Cubes implementation was adapted from the SPSG code by Dai et al. https://github.com/angeladai/spsg

Owner
Dejan
Dejan
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023