Learning to Prompt for Continual Learning

Overview

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation

L2P is a novel continual learning technique which learns to dynamically prompt a pre-trained model to learn tasks sequentially under different task transitions. Different from mainstream rehearsal-based or architecture-based methods, L2P requires neither a rehearsal buffer nor test-time task identity. L2P can be generalized to various continual learning settings including the most challenging and realistic task-agnostic setting. L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer.

Code is written by Zifeng Wang. Acknowledgement to https://github.com/google-research/nested-transformer.

This is not an officially supported Google product.

Enviroment setup

pip install -r requirements.txt

Getting pretrained ViT model

ViT-B/16 model used in this paper can be downloaded at here.

Instructions on running L2P

We provide the configuration file to train and evaluate L2P on multiple benchmarks in configs.

To run our method on the Split CIFAR-100 dataset (class-incremental setting):

python -m main.py --my_config configs/cifar100_l2p.py --workdir=./cifar100_l2p --my_config.init_checkpoint=<ViT-saved-path/ViT-B_16.npz>

To run our method on the more complex Gaussian Scheduled CIFAR-100 dataset (task-agnostic setting):

python -m main.py --my_config configs/cifar100_gaussian_l2p.py --workdir=./cifar100_gaussian_l2p --my_config.init_checkpoint=<ViT-saved-path/ViT-B_16.npz>

Note: we run our experiments using 8 V100 GPUs or 4 TPUs, and we specify a per device batch size of 16 in the config files. This indicates that we use a total batch size of 128.

Visualize results

We use tensorboard to visualize the result. For example, if the working directory specified to run L2P is workdir=./cifar100_l2p, the command to check result is as follows:

tensorboard --logdir ./cifar100_l2p

Here are the important metrics to keep track of, and their corresponding meanings:

Metric Description
accuracy_n Accuracy of the n-th task
forgetting Average forgetting up until the current task
avg_acc Average evaluation accuracy up until the current task

Cite

@inproceedings{wang2021learning,
  title={Learning to Prompt for Continual Learning},
  author={Zifeng Wang and Zizhao Zhang and Chen-Yu Lee and Han Zhang and Ruoxi Sun and Xiaoqi Ren and Guolong Su and Vincent Perot and Jennifer Dy and Tomas Pfister},
  booktitle={arXiv preprint arXiv:2112.08654},
  year={2021}
}
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Vikrant Deshpande 1 Nov 17, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022