Learning to Prompt for Continual Learning

Overview

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation

L2P is a novel continual learning technique which learns to dynamically prompt a pre-trained model to learn tasks sequentially under different task transitions. Different from mainstream rehearsal-based or architecture-based methods, L2P requires neither a rehearsal buffer nor test-time task identity. L2P can be generalized to various continual learning settings including the most challenging and realistic task-agnostic setting. L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer.

Code is written by Zifeng Wang. Acknowledgement to https://github.com/google-research/nested-transformer.

This is not an officially supported Google product.

Enviroment setup

pip install -r requirements.txt

Getting pretrained ViT model

ViT-B/16 model used in this paper can be downloaded at here.

Instructions on running L2P

We provide the configuration file to train and evaluate L2P on multiple benchmarks in configs.

To run our method on the Split CIFAR-100 dataset (class-incremental setting):

python -m main.py --my_config configs/cifar100_l2p.py --workdir=./cifar100_l2p --my_config.init_checkpoint=<ViT-saved-path/ViT-B_16.npz>

To run our method on the more complex Gaussian Scheduled CIFAR-100 dataset (task-agnostic setting):

python -m main.py --my_config configs/cifar100_gaussian_l2p.py --workdir=./cifar100_gaussian_l2p --my_config.init_checkpoint=<ViT-saved-path/ViT-B_16.npz>

Note: we run our experiments using 8 V100 GPUs or 4 TPUs, and we specify a per device batch size of 16 in the config files. This indicates that we use a total batch size of 128.

Visualize results

We use tensorboard to visualize the result. For example, if the working directory specified to run L2P is workdir=./cifar100_l2p, the command to check result is as follows:

tensorboard --logdir ./cifar100_l2p

Here are the important metrics to keep track of, and their corresponding meanings:

Metric Description
accuracy_n Accuracy of the n-th task
forgetting Average forgetting up until the current task
avg_acc Average evaluation accuracy up until the current task

Cite

@inproceedings{wang2021learning,
  title={Learning to Prompt for Continual Learning},
  author={Zifeng Wang and Zizhao Zhang and Chen-Yu Lee and Han Zhang and Ruoxi Sun and Xiaoqi Ren and Guolong Su and Vincent Perot and Jennifer Dy and Tomas Pfister},
  booktitle={arXiv preprint arXiv:2112.08654},
  year={2021}
}
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Namish Khanna 40 Oct 11, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022