Message Passing on Cell Complexes

Related tags

Deep Learningcwn
Overview

CW Networks

example workflow

This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks (ICML 2021)

alt text     alt text   alt text

Graph Neural Networks (GNNs) are limited in their expressive power, struggle with long-range interactions and lack a principled way to model higher-order structures. These problems can be attributed to the strong coupling between the computational graph and the input graph structure. The recently proposed Message Passing Simplicial Networks naturally decouple these elements by performing message passing on the clique complex of the graph. Nevertheless, these models are severely constrained by the rigid combinatorial structure of Simplicial Complexes (SCs). In this work, we extend recent theoretical results on SCs to regular Cell Complexes, topological objects that flexibly subsume SCs and graphs. We show that this generalisation provides a powerful set of graph "lifting" transformations, each leading to a unique hierarchical message passing procedure. The resulting methods, which we collectively call CW Networks (CWNs), are strictly more powerful than the WL test and, in certain cases, not less powerful than the 3-WL test. In particular, we demonstrate the effectiveness of one such scheme, based on rings, when applied to molecular graph problems. The proposed architecture benefits from provably larger expressivity than commonly used GNNs, principled modelling of higher-order signals and from compressing the distances between nodes. We demonstrate that our model achieves state-of-the-art results on a variety of molecular datasets.

Installation

We use Python 3.8 and PyTorch 1.7.0 on CUDA 10.2 for this project. Please open a terminal window and follow these steps to prepare the virtual environment needed to run any experiment.

Create the environment:

conda create --name cwn python=3.8
conda activate cwn

Install dependencies:

conda install -y pytorch=1.7.0 torchvision cudatoolkit=10.2 -c pytorch
sh pyG_install.sh cu102
pip install -r requirements.txt
sh graph-tool_install.sh

Testing

We suggest running all tests in the repository to verify everything is in place. Run:

pytest -v .

All tests should pass. Note that some tests are skipped since they rely on external datasets or take a long time to run. We periodically run these tests manually.

Experiments

We prepared individual scripts for each experiment. The results are written in the exp/results/ directory and are also displayed in the terminal once the training is complete. Before the training starts, the scripts will download / preprocess the corresponding graph datasets and perform the appropriate graph-lifting procedure (this might take a while).

Molecular benchmarks

To run an experiment on a molecular benchmark with a CWN, execute:

sh exp/scripts/cwn-<benchmark>.sh

with <benchmark> one amongst zinc, zinc-full, molhiv.

Imposing the parameter budget: it is sufficient to add the suffix -small to the <benchmark> placeholder:

sh exp/scripts/cwn-<benchmark>-small.sh

For example, sh exp/scripts/cwn-zinc-small.sh will run the training on ZINC with parameter budget.

Distinguishing SR graphs

To run an experiment on the SR benchmark with a CWN, run:

sh exp/scripts/cwn-sr.sh <k>

replacing <k> with a value amongst 4, 5, 6 (<k> is the maximum ring size employed in the lifting procedure). The results, for each family, will be written under exp/results/SR-cwn-sr-<k>/.

The following command will run the MLP-sum (strong) baseline on the same ring-lifted graphs:

sh exp/scripts/cwn-sr-base.sh <k>

In order to run these experiment with clique-complex lifting (MPSNs), run:

sh exp/scripts/mpsn-sr.sh

Clique-lifting is applied up to dimension k-1, with k the maximum clique-size in the family.

The MLP-sum baseline on clique-complexes is run with:

sh exp/scripts/mpsn-sr-base.sh

Circular Skip Link (CSL) Experiments

To run the experiments on the CSL dataset (5 folds x 20 seeds), run the following script:

sh exp/scripts/cwn-csl.sh

Trajectory classification

For the Ocean Dataset experiments, the data must be downloaded from here. The file must be placed in datasets/OCEAN/raw/.

For running the experiments use the following scripts:

sh ./exp/scripts/mpsn-flow.sh [id/relu/tanh]
sh ./exp/scripts/mpsn-ocean.sh [id/relu/tanh]
sh ./exp/scripts/gnn-inv-flow.sh
sh ./exp/scripts/gnn-inv-ocean.sh

TUDatasets

For experiments on TUDatasets first download the raw data from here. Please place the downloaded archive on the root of the repository and unzip it (e.g. unzip ./datasets.zip).

Here we provide the scripts to run CWN on NCI109 and MPSN on REDDITBINARY. This script can be customised to run additional experiments on other datasets.

sh ./exp/scripts/cwn-nci109.sh
sh ./exp/scripts/mpsn-redditb.sh

Credits

For attribution in academic contexts, please cite the following papers

@InProceedings{pmlr-v139-bodnar21a,
  title = 	 {Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks},
  author =       {Bodnar, Cristian and Frasca, Fabrizio and Wang, Yuguang and Otter, Nina and Montufar, Guido F and Li{\'o}, Pietro and Bronstein, Michael},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {1026--1037},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
}
@article{bodnar2021b,
  title={Weisfeiler and Lehman Go Cellular: CW Networks},
  author={Bodnar, Cristian and Frasca, Fabrizio and Otter, Nina and Wang, Yu Guang and Li{\`o}, Pietro and Mont{\'u}far, Guido and Bronstein, Michael},
  journal={arXiv preprint arXiv:2106.12575},
  year={2021}
}

TODOs

  • Add support for coboundary adjacencies.
  • Refactor the way empty cochains are handled for batching.
  • Remove redundant parameters from the models (e.g. msg_up_nn in the top dimension.)
  • Refactor data classes so to remove setters for __num_xxx_cells__ like attributes.
  • Address other TODOs left in the code.
Owner
Twitter Research
Twitter #opensource projects related to our published research
Twitter Research
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022