Message Passing on Cell Complexes

Related tags

Deep Learningcwn
Overview

CW Networks

example workflow

This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks (ICML 2021)

alt text     alt text   alt text

Graph Neural Networks (GNNs) are limited in their expressive power, struggle with long-range interactions and lack a principled way to model higher-order structures. These problems can be attributed to the strong coupling between the computational graph and the input graph structure. The recently proposed Message Passing Simplicial Networks naturally decouple these elements by performing message passing on the clique complex of the graph. Nevertheless, these models are severely constrained by the rigid combinatorial structure of Simplicial Complexes (SCs). In this work, we extend recent theoretical results on SCs to regular Cell Complexes, topological objects that flexibly subsume SCs and graphs. We show that this generalisation provides a powerful set of graph "lifting" transformations, each leading to a unique hierarchical message passing procedure. The resulting methods, which we collectively call CW Networks (CWNs), are strictly more powerful than the WL test and, in certain cases, not less powerful than the 3-WL test. In particular, we demonstrate the effectiveness of one such scheme, based on rings, when applied to molecular graph problems. The proposed architecture benefits from provably larger expressivity than commonly used GNNs, principled modelling of higher-order signals and from compressing the distances between nodes. We demonstrate that our model achieves state-of-the-art results on a variety of molecular datasets.

Installation

We use Python 3.8 and PyTorch 1.7.0 on CUDA 10.2 for this project. Please open a terminal window and follow these steps to prepare the virtual environment needed to run any experiment.

Create the environment:

conda create --name cwn python=3.8
conda activate cwn

Install dependencies:

conda install -y pytorch=1.7.0 torchvision cudatoolkit=10.2 -c pytorch
sh pyG_install.sh cu102
pip install -r requirements.txt
sh graph-tool_install.sh

Testing

We suggest running all tests in the repository to verify everything is in place. Run:

pytest -v .

All tests should pass. Note that some tests are skipped since they rely on external datasets or take a long time to run. We periodically run these tests manually.

Experiments

We prepared individual scripts for each experiment. The results are written in the exp/results/ directory and are also displayed in the terminal once the training is complete. Before the training starts, the scripts will download / preprocess the corresponding graph datasets and perform the appropriate graph-lifting procedure (this might take a while).

Molecular benchmarks

To run an experiment on a molecular benchmark with a CWN, execute:

sh exp/scripts/cwn-<benchmark>.sh

with <benchmark> one amongst zinc, zinc-full, molhiv.

Imposing the parameter budget: it is sufficient to add the suffix -small to the <benchmark> placeholder:

sh exp/scripts/cwn-<benchmark>-small.sh

For example, sh exp/scripts/cwn-zinc-small.sh will run the training on ZINC with parameter budget.

Distinguishing SR graphs

To run an experiment on the SR benchmark with a CWN, run:

sh exp/scripts/cwn-sr.sh <k>

replacing <k> with a value amongst 4, 5, 6 (<k> is the maximum ring size employed in the lifting procedure). The results, for each family, will be written under exp/results/SR-cwn-sr-<k>/.

The following command will run the MLP-sum (strong) baseline on the same ring-lifted graphs:

sh exp/scripts/cwn-sr-base.sh <k>

In order to run these experiment with clique-complex lifting (MPSNs), run:

sh exp/scripts/mpsn-sr.sh

Clique-lifting is applied up to dimension k-1, with k the maximum clique-size in the family.

The MLP-sum baseline on clique-complexes is run with:

sh exp/scripts/mpsn-sr-base.sh

Circular Skip Link (CSL) Experiments

To run the experiments on the CSL dataset (5 folds x 20 seeds), run the following script:

sh exp/scripts/cwn-csl.sh

Trajectory classification

For the Ocean Dataset experiments, the data must be downloaded from here. The file must be placed in datasets/OCEAN/raw/.

For running the experiments use the following scripts:

sh ./exp/scripts/mpsn-flow.sh [id/relu/tanh]
sh ./exp/scripts/mpsn-ocean.sh [id/relu/tanh]
sh ./exp/scripts/gnn-inv-flow.sh
sh ./exp/scripts/gnn-inv-ocean.sh

TUDatasets

For experiments on TUDatasets first download the raw data from here. Please place the downloaded archive on the root of the repository and unzip it (e.g. unzip ./datasets.zip).

Here we provide the scripts to run CWN on NCI109 and MPSN on REDDITBINARY. This script can be customised to run additional experiments on other datasets.

sh ./exp/scripts/cwn-nci109.sh
sh ./exp/scripts/mpsn-redditb.sh

Credits

For attribution in academic contexts, please cite the following papers

@InProceedings{pmlr-v139-bodnar21a,
  title = 	 {Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks},
  author =       {Bodnar, Cristian and Frasca, Fabrizio and Wang, Yuguang and Otter, Nina and Montufar, Guido F and Li{\'o}, Pietro and Bronstein, Michael},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {1026--1037},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
}
@article{bodnar2021b,
  title={Weisfeiler and Lehman Go Cellular: CW Networks},
  author={Bodnar, Cristian and Frasca, Fabrizio and Otter, Nina and Wang, Yu Guang and Li{\`o}, Pietro and Mont{\'u}far, Guido and Bronstein, Michael},
  journal={arXiv preprint arXiv:2106.12575},
  year={2021}
}

TODOs

  • Add support for coboundary adjacencies.
  • Refactor the way empty cochains are handled for batching.
  • Remove redundant parameters from the models (e.g. msg_up_nn in the top dimension.)
  • Refactor data classes so to remove setters for __num_xxx_cells__ like attributes.
  • Address other TODOs left in the code.
Owner
Twitter Research
Twitter #opensource projects related to our published research
Twitter Research
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022