Pre-trained NFNets with 99% of the accuracy of the official paper

Overview

NFNet Pytorch Implementation

This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale Image Recognition Without Normalization. The small models are as accurate as an EfficientNet-B7, but train 8.7 times faster. The large models set a new SOTA top-1 accuracy on ImageNet.

NFNet F0 F1 F2 F3 F4 F5 F6+SAM
Top-1 accuracy Brock et al. 83.6 84.7 85.1 85.7 85.9 86.0 86.5
Top-1 accuracy this implementation 82.82 84.63 84.90 85.46 85.66 85.62 TBD

All credits go to the authors of the original paper. This repo is heavily inspired by their nice JAX implementation in the official repository. Visit their repo for citing.

Get started

git clone https://github.com/benjs/nfnets_pytorch.git
pip3 install -r requirements.txt

Download pretrained weights from the official repository and place them in the pretrained folder.

from pretrained import pretrained_nfnet
model_F0 = pretrained_nfnet('pretrained/F0_haiku.npz')
model_F1 = pretrained_nfnet('pretrained/F1_haiku.npz')
# ...

The model variant is automatically derived from the parameter count in the pretrained weights file.

Validate yourself

python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset path/to/imagenet/valset/

You can download the ImageNet validation set from the ILSVRC2012 challenge site after asking for access with, for instance, your .edu mail address.

Scaled weight standardization convolutions in your own model

Simply replace all your nn.Conv2d with WSConv2D and all your nn.ReLU with VPReLU or VPGELU (variance preserving ReLU/GELU).

import torch.nn as nn
from model import WSConv2D, VPReLU, VPGELU

# Simply replace your nn.Conv2d layers
class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
 
        self.activation = VPReLU(inplace=True) # or VPGELU
        self.conv0 = WSConv2D(in_channels=128, out_channels=256, kernel_size=1, ...)
        # ...

    def forward(self, x):
      out = self.activation(self.conv0(x))
      # ...

SGD with adaptive gradient clipping in your own model

Simply replace your SGD optimizer with SGD_AGC.

from optim import SGD_AGC

optimizer = SGD_AGC(
        named_params=model.named_parameters(), # Pass named parameters
        lr=1e-3,
        momentum=0.9,
        clipping=0.1, # New clipping parameter
        weight_decay=2e-5, 
        nesterov=True)

It is important to exclude certain layers from clipping or momentum. The authors recommends to exclude the last fully convolutional from clipping and the bias/gain parameters from weight decay:

import re

for group in optimizer.param_groups:
    name = group['name'] 
    
    # Exclude from weight decay
    if len(re.findall('stem.*(bias|gain)|conv.*(bias|gain)|skip_gain', name)) > 0:
        group['weight_decay'] = 0

    # Exclude from clipping
    if name.startswith('linear'):
        group['clipping'] = None

Train your own NFNet

Adjust your desired parameters in default_config.yaml and start training.

python3 train.py --dataset /path/to/imagenet/

There is still some parts missing for complete training from scratch:

  • Multi-GPU training
  • Data augmentations
  • FP16 activations and gradients

Contribute

The implementation is still in an early stage in terms of usability / testing. If you have an idea to improve this repo open an issue, start a discussion or submit a pull request.

Development status

  • Pre-trained NFNet Models
    • F0-F5
    • F6+SAM
    • Scaled weight standardization
    • Squeeze and excite
    • Stochastic depth
    • FP16 activations
  • SGD with unit adaptive gradient clipping (SGD-AGC)
    • Exclude certain layers from weight-decay, clipping
    • FP16 gradients
  • PyPI package
  • PyTorch hub submission
  • Label smoothing loss from Szegedy et al.
  • Training on ImageNet
  • Pre-trained weights
  • Tensorboard support
  • general usability improvements
  • Multi-GPU support
  • Data augmentation
  • Signal propagation plots (from first paper)
Comments
  • ModuleNotFoundError: No module named 'haiku'

    ModuleNotFoundError: No module named 'haiku'

    when i try "python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset ***" i got this error, have you ever met this error? how to fix this?

    opened by Rianusr 2
  • Trained without data augmentation?

    Trained without data augmentation?

    Thanks for the great work on the pytorch implementation of NFNet! The accuracies achieved by this implementation are pretty impressive also and I am wondering if these training results were simply derived from the training script, that is, without data augmentation.

    opened by nandi-zhang 2
  • from_pretrained_haiku

    from_pretrained_haiku

    https://github.com/benjs/nfnets_pytorch/blob/7b4d1cc701c7de4ee273ded01ce21cbdb1e60c48/nfnets/pretrained.py#L90

    model = from_pretrained_haiku(args.pretrained)

    where is 'from_pretrained_haiku' method?

    opened by vkmavani 0
  • About WSconv2d

    About WSconv2d

    I see the authoe's code, I find his WSconv2d pad_mod is 'same'. Pytorch's conv2d dono't have pad_mode, and I think your padding should greater 0, but I find your padding always be 0. I want to know why?

    I see you train.py your learning rate is constant, why? Thank you!

    opened by fancyshun 3
  • AveragePool

    AveragePool

    Hi, noticed that the AveragePool ('pool' layer) is not used in forward function. Instead, forward uses torch.mean. Removing the layer doesn't change pooling behavior. I tried using this model as a feature extractor and was a bit confused for a moment.

    opened by bogdankjastrzebski 1
Releases(v0.0.1)
Owner
Benjamin Schmidt
Engineering Student
Benjamin Schmidt
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Facebook Research 605 Jan 02, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022