(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

Overview

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework


Background: Outlier detection (OD) is a key data mining task for identifying abnormal objects from general samples with numerous high-stake applications including fraud detection and intrusion detection.

To scale outlier detection (OD) to large-scale, high-dimensional datasets, we propose TOD, a novel system that abstracts OD algorithms into basic tensor operations for efficient GPU acceleration.

The corresponding paper. The code is being cleaned up and released. Please watch and star!

One reason to use it:

On average, TOD is 11 times faster than PyOD!

If you need another reason: it can handle much larger datasets:more than a million sample OD within an hour!


TOD is featured for:

  • Unified APIs, detailed documentation, and examples for the easy use (under construction)
  • Supports more than 10 different OD algorithms and more are being added
  • TOD supports multi-GPU acceleration
  • Advanced techniques like provable quantization

Programming Model Interface

Complex OD algorithms can be abstracted into common tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction.png

For instance, ABOD and COPOD can be assembled by the basic tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction_example.png

End-to-end Performance Comparison with PyOD

Overall, it is much (on avg. 11 times) faster than PyOD takes way less run time.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/run_time.png

Code is being released. Watch and star for the latest news!

Comments
  • Error while installing package

    Error while installing package

    I installed Pytorch 1.10 from their site. It seen in virtual environment. I try pip install pytod but when searching for pytorch, it cannot find it because it searches with the "pytorch" package, not the "torch" package.

    ERROR: Could not find a version that satisfies the requirement pytorch>=1.7 (from pytod) (from versions: 0.1.2, 1.0.2)
    ERROR: No matching distribution found for pytorch>=1.7
    
    opened by nuriakiin 1
  • decision_function() returns None

    decision_function() returns None

    Thanks for the package. When I try to implement LOF (or KNN) decision_function() on test data returns empty object. Is there a fix to this? Following is the code that replicates the issue (on GPU):

    from pytod.models.lof import LOF import torch import numpy as np

    x = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [75,80]], dtype=np.float32) x = torch.from_numpy(x)

    y = np.array([[6, 5], [1, 2], [3, 4], [5, 1], [11,12]], dtype=np.float32) y = torch.from_numpy(y)

    lof = LOF(n_neighbors=2, device = 'cuda:0')

    lof.fit(x)

    print(lof.decision_function(y))

    opened by sugatc 0
  • Support for novelty detection and changing distance metric with local outlier factor

    Support for novelty detection and changing distance metric with local outlier factor

    The current implementation of LOF doesn't allow changing the distance metric to 'cosine', for example or setting novelty = True which prevents it from being used for novelty detection task. It will be great if support can be added for these.

    opened by sugatc 2
  • can't fit model in colab

    can't fit model in colab

    when i try fit on any model in colab gpu instance i get the following error. my dataset has 2 columns and 1 million rows:


    AttributeError Traceback (most recent call last) in () 4 clf_name = 'KNN' 5 clf = LOF() ----> 6 clf.fit(X)

    3 frames /usr/local/lib/python3.7/dist-packages/pandas/core/generic.py in getattr(self, name) 5485 ): 5486 return self[name] -> 5487 return object.getattribute(self, name) 5488 5489 def setattr(self, name: str, value) -> None:

    AttributeError: 'DataFrame' object has no attribute 'to'

    opened by yairVanti 0
  • clean up reproducibility scripts

    clean up reproducibility scripts

    We are cleaning up these scripts for an easy run, while the primary results are reproducible with the compare_real_data.py (https://github.com/yzhao062/pytod/tree/main/reproducibility)

    enhancement 
    opened by yzhao062 0
Releases(v0.0.2)
  • v0.0.2(Jun 19, 2022)

    v<0.0.1>, <04/12/2021> -- Add LOF. v<0.0.1>, <04/23/2021> -- Add ABOD. v<0.0.2>, <06/19/2021> -- Add PCA and HBOS. v<0.0.2>, <06/19/2021> -- Turn on test suites.

    Now we have updated both the paper the repo to cover more algorithms.

    Source code(tar.gz)
    Source code(zip)
Owner
Yue Zhao
Ph.D. Student @ CMU. Outlier Detection Systems | ML Systems (MLSys) | Anomaly/Outlier Detection | AutoML. Twitter@ yzhao062
Yue Zhao
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022