(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

Overview

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework


Background: Outlier detection (OD) is a key data mining task for identifying abnormal objects from general samples with numerous high-stake applications including fraud detection and intrusion detection.

To scale outlier detection (OD) to large-scale, high-dimensional datasets, we propose TOD, a novel system that abstracts OD algorithms into basic tensor operations for efficient GPU acceleration.

The corresponding paper. The code is being cleaned up and released. Please watch and star!

One reason to use it:

On average, TOD is 11 times faster than PyOD!

If you need another reason: it can handle much larger datasets:more than a million sample OD within an hour!


TOD is featured for:

  • Unified APIs, detailed documentation, and examples for the easy use (under construction)
  • Supports more than 10 different OD algorithms and more are being added
  • TOD supports multi-GPU acceleration
  • Advanced techniques like provable quantization

Programming Model Interface

Complex OD algorithms can be abstracted into common tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction.png

For instance, ABOD and COPOD can be assembled by the basic tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction_example.png

End-to-end Performance Comparison with PyOD

Overall, it is much (on avg. 11 times) faster than PyOD takes way less run time.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/run_time.png

Code is being released. Watch and star for the latest news!

Comments
  • Error while installing package

    Error while installing package

    I installed Pytorch 1.10 from their site. It seen in virtual environment. I try pip install pytod but when searching for pytorch, it cannot find it because it searches with the "pytorch" package, not the "torch" package.

    ERROR: Could not find a version that satisfies the requirement pytorch>=1.7 (from pytod) (from versions: 0.1.2, 1.0.2)
    ERROR: No matching distribution found for pytorch>=1.7
    
    opened by nuriakiin 1
  • decision_function() returns None

    decision_function() returns None

    Thanks for the package. When I try to implement LOF (or KNN) decision_function() on test data returns empty object. Is there a fix to this? Following is the code that replicates the issue (on GPU):

    from pytod.models.lof import LOF import torch import numpy as np

    x = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [75,80]], dtype=np.float32) x = torch.from_numpy(x)

    y = np.array([[6, 5], [1, 2], [3, 4], [5, 1], [11,12]], dtype=np.float32) y = torch.from_numpy(y)

    lof = LOF(n_neighbors=2, device = 'cuda:0')

    lof.fit(x)

    print(lof.decision_function(y))

    opened by sugatc 0
  • Support for novelty detection and changing distance metric with local outlier factor

    Support for novelty detection and changing distance metric with local outlier factor

    The current implementation of LOF doesn't allow changing the distance metric to 'cosine', for example or setting novelty = True which prevents it from being used for novelty detection task. It will be great if support can be added for these.

    opened by sugatc 2
  • can't fit model in colab

    can't fit model in colab

    when i try fit on any model in colab gpu instance i get the following error. my dataset has 2 columns and 1 million rows:


    AttributeError Traceback (most recent call last) in () 4 clf_name = 'KNN' 5 clf = LOF() ----> 6 clf.fit(X)

    3 frames /usr/local/lib/python3.7/dist-packages/pandas/core/generic.py in getattr(self, name) 5485 ): 5486 return self[name] -> 5487 return object.getattribute(self, name) 5488 5489 def setattr(self, name: str, value) -> None:

    AttributeError: 'DataFrame' object has no attribute 'to'

    opened by yairVanti 0
  • clean up reproducibility scripts

    clean up reproducibility scripts

    We are cleaning up these scripts for an easy run, while the primary results are reproducible with the compare_real_data.py (https://github.com/yzhao062/pytod/tree/main/reproducibility)

    enhancement 
    opened by yzhao062 0
Releases(v0.0.2)
  • v0.0.2(Jun 19, 2022)

    v<0.0.1>, <04/12/2021> -- Add LOF. v<0.0.1>, <04/23/2021> -- Add ABOD. v<0.0.2>, <06/19/2021> -- Add PCA and HBOS. v<0.0.2>, <06/19/2021> -- Turn on test suites.

    Now we have updated both the paper the repo to cover more algorithms.

    Source code(tar.gz)
    Source code(zip)
Owner
Yue Zhao
Ph.D. Student @ CMU. Outlier Detection Systems | ML Systems (MLSys) | Anomaly/Outlier Detection | AutoML. Twitter@ yzhao062
Yue Zhao
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023