(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

Overview

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework


Background: Outlier detection (OD) is a key data mining task for identifying abnormal objects from general samples with numerous high-stake applications including fraud detection and intrusion detection.

To scale outlier detection (OD) to large-scale, high-dimensional datasets, we propose TOD, a novel system that abstracts OD algorithms into basic tensor operations for efficient GPU acceleration.

The corresponding paper. The code is being cleaned up and released. Please watch and star!

One reason to use it:

On average, TOD is 11 times faster than PyOD!

If you need another reason: it can handle much larger datasets:more than a million sample OD within an hour!


TOD is featured for:

  • Unified APIs, detailed documentation, and examples for the easy use (under construction)
  • Supports more than 10 different OD algorithms and more are being added
  • TOD supports multi-GPU acceleration
  • Advanced techniques like provable quantization

Programming Model Interface

Complex OD algorithms can be abstracted into common tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction.png

For instance, ABOD and COPOD can be assembled by the basic tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction_example.png

End-to-end Performance Comparison with PyOD

Overall, it is much (on avg. 11 times) faster than PyOD takes way less run time.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/run_time.png

Code is being released. Watch and star for the latest news!

Comments
  • Error while installing package

    Error while installing package

    I installed Pytorch 1.10 from their site. It seen in virtual environment. I try pip install pytod but when searching for pytorch, it cannot find it because it searches with the "pytorch" package, not the "torch" package.

    ERROR: Could not find a version that satisfies the requirement pytorch>=1.7 (from pytod) (from versions: 0.1.2, 1.0.2)
    ERROR: No matching distribution found for pytorch>=1.7
    
    opened by nuriakiin 1
  • decision_function() returns None

    decision_function() returns None

    Thanks for the package. When I try to implement LOF (or KNN) decision_function() on test data returns empty object. Is there a fix to this? Following is the code that replicates the issue (on GPU):

    from pytod.models.lof import LOF import torch import numpy as np

    x = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [75,80]], dtype=np.float32) x = torch.from_numpy(x)

    y = np.array([[6, 5], [1, 2], [3, 4], [5, 1], [11,12]], dtype=np.float32) y = torch.from_numpy(y)

    lof = LOF(n_neighbors=2, device = 'cuda:0')

    lof.fit(x)

    print(lof.decision_function(y))

    opened by sugatc 0
  • Support for novelty detection and changing distance metric with local outlier factor

    Support for novelty detection and changing distance metric with local outlier factor

    The current implementation of LOF doesn't allow changing the distance metric to 'cosine', for example or setting novelty = True which prevents it from being used for novelty detection task. It will be great if support can be added for these.

    opened by sugatc 2
  • can't fit model in colab

    can't fit model in colab

    when i try fit on any model in colab gpu instance i get the following error. my dataset has 2 columns and 1 million rows:


    AttributeError Traceback (most recent call last) in () 4 clf_name = 'KNN' 5 clf = LOF() ----> 6 clf.fit(X)

    3 frames /usr/local/lib/python3.7/dist-packages/pandas/core/generic.py in getattr(self, name) 5485 ): 5486 return self[name] -> 5487 return object.getattribute(self, name) 5488 5489 def setattr(self, name: str, value) -> None:

    AttributeError: 'DataFrame' object has no attribute 'to'

    opened by yairVanti 0
  • clean up reproducibility scripts

    clean up reproducibility scripts

    We are cleaning up these scripts for an easy run, while the primary results are reproducible with the compare_real_data.py (https://github.com/yzhao062/pytod/tree/main/reproducibility)

    enhancement 
    opened by yzhao062 0
Releases(v0.0.2)
  • v0.0.2(Jun 19, 2022)

    v<0.0.1>, <04/12/2021> -- Add LOF. v<0.0.1>, <04/23/2021> -- Add ABOD. v<0.0.2>, <06/19/2021> -- Add PCA and HBOS. v<0.0.2>, <06/19/2021> -- Turn on test suites.

    Now we have updated both the paper the repo to cover more algorithms.

    Source code(tar.gz)
    Source code(zip)
Owner
Yue Zhao
Ph.D. Student @ CMU. Outlier Detection Systems | ML Systems (MLSys) | Anomaly/Outlier Detection | AutoML. Twitter@ yzhao062
Yue Zhao
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022