[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

Overview

FFB6D

This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv)

Table of Content

Introduction & Citation

FFB6D is a general framework for representation learning from a single RGBD image, and we applied it to the 6D pose estimation task by cascading downstream prediction headers for instance semantic segmentation and 3D keypoint voting prediction from PVN3D(Arxiv, Code, Video). At the representation learning stage of FFB6D, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation.

Please cite FFB6D & PVN3D if you use this repository in your publications:

@InProceedings{He_2021_CVPR,
author = {He, Yisheng and Huang, Haibin and Fan, Haoqiang and Chen, Qifeng and Sun, Jian},
title = {FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}

@InProceedings{He_2020_CVPR,
author = {He, Yisheng and Sun, Wei and Huang, Haibin and Liu, Jianran and Fan, Haoqiang and Sun, Jian},
title = {PVN3D: A Deep Point-Wise 3D Keypoints Voting Network for 6DoF Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation

  • Install CUDA 10.1 / 10.2

  • Set up python3 environment from requirement.txt:

    pip3 install -r requirement.txt 
  • Install apex:

    git clone https://github.com/NVIDIA/apex
    cd apex
    export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5"  # set the target architecture manually, suggested in issue https://github.com/NVIDIA/apex/issues/605#issuecomment-554453001
    pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
    cd ..
  • Install normalSpeed, a fast and light-weight normal map estimator:

    git clone https://github.com/hfutcgncas/normalSpeed.git
    cd normalSpeed/normalSpeed
    python3 setup.py install --user
    cd ..
  • Install tkinter through sudo apt install python3-tk

  • Compile RandLA-Net operators:

    cd ffb6d/models/RandLA/
    sh compile_op.sh

Code Structure

[Click to expand]
  • ffb6d
    • ffb6d/common.py: Common configuration of dataset and models, eg. dataset path, keypoints path, batch size and so on.
    • ffb6d/datasets
      • ffb6d/datasets/ycb
        • ffb6d/datasets/ycb/ycb_dataset.py: Data loader for YCB_Video dataset.
        • ffb6d/datasets/ycb/dataset_config
          • ffb6d/datasets/ycb/dataset_config/classes.txt: Object list of YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/radius.txt: Radius of each object in YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/train_data_list.txt: Training set of YCB_Video datset.
          • ffb6d/datasets/ycb/dataset_config/test_data_list.txt: Testing set of YCB_Video dataset.
        • ffb6d/datasets/ycb/ycb_kps
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_8_kps.txt: ORB-FPS 3D keypoints of an object in the object coordinate system.
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_corners.txt: 8 corners of the 3D bounding box of an object in the object coordinate system.
    • ffb6d/models
      • ffb6d/models/ffb6d.py: Network architecture of the proposed FFB6D.
      • ffb6d/models/cnn
        • ffb6d/models/cnn/extractors.py: Resnet backbones.
        • ffb6d/models/cnn/pspnet.py: PSPNet decoder.
        • ffb6d/models/cnn/ResNet_pretrained_mdl: Resnet pretraiend model weights.
      • ffb6d/models/loss.py: loss calculation for training of FFB6D model.
      • ffb6d/models/pytorch_utils.py: pytorch basic network modules.
      • ffb6d/models/RandLA/: pytorch version of RandLA-Net from RandLA-Net-pytorch
    • ffb6d/utils
      • ffb6d/utils/basic_utils.py: basic functions for data processing, visualization and so on.
      • ffb6d/utils/meanshift_pytorch.py: pytorch version of meanshift algorithm for 3D center point and keypoints voting.
      • ffb6d/utils/pvn3d_eval_utils_kpls.py: Object pose esitimation from predicted center/keypoints offset and evaluation metrics.
      • ffb6d/utils/ip_basic: Image Processing for Basic Depth Completion from ip_basic.
      • ffb6d/utils/dataset_tools
        • ffb6d/utils/dataset_tools/DSTOOL_README.md: README for dataset tools.
        • ffb6d/utils/dataset_tools/requirement.txt: Python3 requirement for dataset tools.
        • ffb6d/utils/dataset_tools/gen_obj_info.py: Generate object info, including SIFT-FPS 3d keypoints, radius etc.
        • ffb6d/utils/dataset_tools/rgbd_rnder_sift_kp3ds.py: Render rgbd images from mesh and extract textured 3d keypoints (SIFT/ORB).
        • ffb6d/utils/dataset_tools/utils.py: Basic utils for mesh, pose, image and system processing.
        • ffb6d/utils/dataset_tools/fps: Furthest point sampling algorithm.
        • ffb6d/utils/dataset_tools/example_mesh: Example mesh models.
    • ffb6d/train_ycb.py: Training & Evaluating code of FFB6D models for the YCB_Video dataset.
    • ffb6d/demo.py: Demo code for visualization.
    • ffb6d/train_ycb.sh: Bash scripts to start the training on the YCB_Video dataset.
    • ffb6d/test_ycb.sh: Bash scripts to start the testing on the YCB_Video dataset.
    • ffb6d/demo_ycb.sh: Bash scripts to start the demo on the YCB_Video_dataset.
    • ffb6d/train_log
      • ffb6d/train_log/ycb
        • ffb6d/train_log/ycb/checkpoints/: Storing trained checkpoints on the YCB_Video dataset.
        • ffb6d/train_log/ycb/eval_results/: Storing evaluated results on the YCB_Video_dataset.
        • ffb6d/train_log/ycb/train_info/: Training log on the YCB_Video_dataset.
  • requirement.txt: python3 environment requirements for pip3 install.
  • figs/: Images shown in README.

Datasets

  • YCB-Video: Download the YCB-Video Dataset from PoseCNN. Unzip it and link the unzippedYCB_Video_Dataset to ffb6d/datasets/ycb/YCB_Video_Dataset:

    ln -s path_to_unzipped_YCB_Video_Dataset ffb6d/datasets/ycb/

Training and evaluating

Training on the YCB-Video Dataset

  • Start training on the YCB-Video Dataset by:

    # commands in train_ycb.sh
    n_gpu=8  # number of gpu to use
    python3 -m torch.distributed.launch --nproc_per_node=$n_gpu train_ycb.py --gpus=$n_gpu

    The trained model checkpoints are stored in train_log/ycb/checkpoints/

    A tip for saving GPU memory: you can open the mixed precision mode to save GPU memory by passing parameters opt_level=O1 to train_ycb.py. The document for apex mixed precision trainnig can be found here.

Evaluating on the YCB-Video Dataset

  • Start evaluating by:
    # commands in test_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar  # checkpoint to test.
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose # -debug
    You can evaluate different checkpoints by revising the tst_mdl to the path of your target model.
  • Pretrained model: We provide our pre-trained models on onedrive, here. Download the pre-trained model, move it to train_log/ycb/checkpoints/ and modify tst_mdl for testing.

Demo/visualization on the YCB-Video Dataset

  • After training your model or downloading the pre-trained model, you can start the demo by:
    # commands in demo_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m demo -checkpoint $tst_mdl -dataset ycb
    The visualization results will be stored in train_log/ycb/eval_results/pose_vis.

Results

  • Evaluation result without any post refinement on the YCB-Video dataset:

    PoseCNN PointFusion DenseFusion PVN3D Our FFF6D
    ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)
    ALL 75.8 59.9 83.9 - 91.2 82.9 95.5 91.8 96.6 92.7
  • Evaluation result on the LineMOD dataset:

    RGB RGB-D
    PVNet CDPN DPOD PointFusion DenseFusion(iterative) G2L-Net PVN3D FFF6D
    MEAN 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7
  • Robustness upon occlusion:

  • Model parameters and speed on the LineMOD dataset (one object / frame) with one 2080Ti GPU:
    Parameters Network Forward Pose Estimation All time
    PVN3D 39.2M 170ms 20ms 190ms
    FFF6D
    33.8M 57ms 18ms 75ms

Adaptation to New Dataset

  • Install and generate required mesh info following DSTOOL_README.

  • Modify info of your new dataset in FFB6D/ffb6d/common.py

  • Write your dataset preprocess script following FFB6D/ffb6d/datasets/ycb/ycb_dataset.py. Note that you should modify or call the function that get your model info, such as 3D keypoints, center points, and radius properly.

  • (Very Important!) Visualize and check if you process the data properly, eg, the projected keypoints and center point, the semantic label of each point, etc. For example, you can visualize the projected center point (red point) and selected keypoints (orange points) as follow by running python3 -m datasets.ycb.ycb_dataset.

  • For inference, make sure that you load the 3D keypoints, center point, and radius of your objects in the object coordinate system properly in FFB6D/ffb6d/utils/pvn3d_eval_utils.py.

  • Check that all setting are modified properly by using the ground truth information for evaluation. The result should be high and close to 100 if everything is correct. For example, testing ground truth on the YCB_Video dataset by passing -test_gt parameters to train_ycb.py will get results higher than 99.99:

    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose -test_gt
    

To Do

  • Scripts and pre-trained models for LineMOD dataset.

License

Licensed under the MIT License.

Owner
Yisheng (Ethan) He
Ph.D. student @ HKUST
Yisheng (Ethan) He
Matthew Colbrook 1 Apr 08, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022