Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Related tags

Deep LearningCDIL-CNN
Overview

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

arXiv preprint: https://arxiv.org/abs/2201.02143.

Architecture

CDIL-CNN is a novel convolutional model for sequence classification. We use symmetric dilated convolutions, a circular mixing protocol, and an average ensemble learning.

Symmetric Dilated Convolutions

Circular Mixing

CDIL-CNN

Experiments

Synthetic Task

To reproduce the synthetic data experiment results, you should:

  1. Run syn_data_generation.py;
  2. Run syn_main.py for one experiment or run syn_all.sh for all experiments.

The generator will create 6 files for each sequence length and store them in the syn_datasets folder in the following format: adding2000_{length}_train.pt adding2000_{length}_train_target.pt adding2000_{length}_test.pt adding2000_{length}_test_target.pt adding2000_{length}_val.pt adding2000_{length}_val_target.pt

By default, it iterates over 8 sequence lengths: [2**7, 2**8, 2**9, 2**10, 2**11, 2**12, 2**13, 2**14].

You can run different models for different lengths. The syn_log folder will save all results.

We provide our used configurations in syn_config.py.

Long Range Arena

Long Range Arena (LRA) is a public benchmark suite. The datasets and the download link can be found in the official GitHub repository.

To reproduce the LRA experiment results, you should:

  1. Download lra_release.gz (~7.7 GB), extract it, move the folder ./lra_release/lra_release into our create_datasets folder, and run all_create_datasets.sh.
  2. Run lra_main.py for one experiment or run lra_all.sh for all experiments.

The dataset creators will create 3 files for each task and store them in the lra_datasets folder in the following format: {task}.train.pickle {task}.test.pickle {task}.dev.pickle

You can run different models on different tasks. The lra_log folder will save all results.

We provide our used configurations in lra_config.py.

Time Series

The UEA & UCR Repository consists of various time series classification datasets. We use three audio datasets: FruitFlies, RightWhaleCalls, and MosquitoSound.

To reproduce the time series results, you should:

  1. Download the datasets, extract them, move the extracted folders into our time_datasets folder, and run time_arff_generation.py.
  2. Run time_main.py for one experiment or run time_all.sh for all experiments.

The generator will create 2 files for each dataset and store them in the time_datasets folder in the following format: {dataset}_train.csv {dataset}_test.csv

You can run different models on different datasets. The time_log folder will save all results.

We provide our used configurations in time_main.py.

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022