Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Related tags

Deep LearningCDIL-CNN
Overview

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

arXiv preprint: https://arxiv.org/abs/2201.02143.

Architecture

CDIL-CNN is a novel convolutional model for sequence classification. We use symmetric dilated convolutions, a circular mixing protocol, and an average ensemble learning.

Symmetric Dilated Convolutions

Circular Mixing

CDIL-CNN

Experiments

Synthetic Task

To reproduce the synthetic data experiment results, you should:

  1. Run syn_data_generation.py;
  2. Run syn_main.py for one experiment or run syn_all.sh for all experiments.

The generator will create 6 files for each sequence length and store them in the syn_datasets folder in the following format: adding2000_{length}_train.pt adding2000_{length}_train_target.pt adding2000_{length}_test.pt adding2000_{length}_test_target.pt adding2000_{length}_val.pt adding2000_{length}_val_target.pt

By default, it iterates over 8 sequence lengths: [2**7, 2**8, 2**9, 2**10, 2**11, 2**12, 2**13, 2**14].

You can run different models for different lengths. The syn_log folder will save all results.

We provide our used configurations in syn_config.py.

Long Range Arena

Long Range Arena (LRA) is a public benchmark suite. The datasets and the download link can be found in the official GitHub repository.

To reproduce the LRA experiment results, you should:

  1. Download lra_release.gz (~7.7 GB), extract it, move the folder ./lra_release/lra_release into our create_datasets folder, and run all_create_datasets.sh.
  2. Run lra_main.py for one experiment or run lra_all.sh for all experiments.

The dataset creators will create 3 files for each task and store them in the lra_datasets folder in the following format: {task}.train.pickle {task}.test.pickle {task}.dev.pickle

You can run different models on different tasks. The lra_log folder will save all results.

We provide our used configurations in lra_config.py.

Time Series

The UEA & UCR Repository consists of various time series classification datasets. We use three audio datasets: FruitFlies, RightWhaleCalls, and MosquitoSound.

To reproduce the time series results, you should:

  1. Download the datasets, extract them, move the extracted folders into our time_datasets folder, and run time_arff_generation.py.
  2. Run time_main.py for one experiment or run time_all.sh for all experiments.

The generator will create 2 files for each dataset and store them in the time_datasets folder in the following format: {dataset}_train.csv {dataset}_test.csv

You can run different models on different datasets. The time_log folder will save all results.

We provide our used configurations in time_main.py.

Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022