[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Overview

Qu-ANTI-zation

This repository contains the code for reproducing the results of our paper:

 


TL; DR

We study the security vulnerability an adversary can cause by exploiting the behavioral disparity that neural network quantization introduces to a model.

 

Abstract (Tell me more!)

Quantization is a popular technique that transforms the parameter representation of a neural network from floating-point numbers into lower-precision ones (e.g., 8-bit integers). It reduces the memory footprint and the computational cost at inference, facilitating the deployment of resource-hungry models. However, the parameter perturbations caused by this transformation result in behavioral disparities between the model before and after quantization. For example, a quantized model can misclassify some test-time samples that are otherwise classified correctly. It is not known whether such differences lead to a new security vulnerability. We hypothesize that an adversary may control this disparity to introduce specific behaviors that activate upon quantization. To study this hypothesis, we weaponize quantization-aware training and propose a new training framework to implement adversarial quantization outcomes. Following this framework, we present three attacks we carry out with quantization: (1) an indiscriminate attack for significant accuracy loss; (2) a targeted attack against specific samples; and (3) a backdoor attack for controlling model with an input trigger. We further show that a single compromised model defeats multiple quantization schemes, including robust quantization techniques. Moreover, in a federated learning scenario, we demonstrate that a set of malicious participants who conspire can inject our quantization-activated backdoor. Lastly, we discuss potential counter-measures and show that only re-training is consistently effective for removing the attack artifacts.

 


Prerequisites

  1. Download Tiny-ImageNet dataset.
    $ mkdir datasets
    $ ./download.sh
  1. Download the pre-trained models from Google Drive.
    $ unzip models.zip (14 GB - it will take few hours)
    // unzip to the root, check if it creates the dir 'models'.

 


Injecting Malicious Behaviors into Pre-trained Models

Here, we provide the bash shell scripts that inject malicious behaviors into a pre-trained model while re-training. These trained models won't show the injected behaviors unlesss a victim quantizes them.

  1. Indiscriminate attacks: run attack_w_lossfn.sh
  2. Targeted attacks: run class_w_lossfn.sh (a specific class) | sample_w_lossfn.sh (a specific sample)
  3. Backdoor attacks: run backdoor_w_lossfn.sh

 


Run Some Analysis

 

Examine the model's properties (e.g., Hessian)

Use the run_analysis.py to examine various properties of the malicious models. Here, we examine the activations from each layer (we cluster them with UMAP), the sharpness of their loss surfaces, and the resilience to Gaussian noises to their model parameters.

 

Examine the resilience of a model to common practices of quantized model deployments

Use the run_retrain.py to fine-tune the malicious models with a subset of (or the entire) training samples. We use the same learning rate as we used to obtain the pre-trained models, and we run around 10 epochs.

 


Federated Learning Experiments

To run the federated learning experiments, use the attack_fedlearn.py script.

  1. To run the script w/o any compromised participants.
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=0 --multibit --attmode accdrop --epochs_attack 10
  1. To run the script with 5% of compromised participants.
    // In case of the indiscriminate attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode accdrop --epochs_attack 10

    // In case of the backdoor attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode backdoor --epochs_attack 10

 


Cite Our Work

Please cite our work if you find this source code helpful.

[Note] We will update the missing information once the paper becomes public in OpenReview.

@inproceedings{Hong2021QuANTIzation,
    author = {Hong, Sanghyun and Panaitescu-Liess, Michael-Andrei and Kaya, Yiǧitcan and Dumitraş, Tudor},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {},
    pages = {},
    publisher = {},
    title = {{Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving Adversarial Outcomes}},
    url = {},
    volume = {34},
    year = {2021}
}

 


 

Please contact Sanghyun Hong for any questions and recommendations.

Owner
Secure AI Systems Lab
SAIL @ Oregon State University
Secure AI Systems Lab
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022