MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

Overview

MINIROCKET

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

arXiv:2012.08791 (preprint)

Until recently, the most accurate methods for time series classification were limited by high computational complexity. ROCKET achieves state-of-the-art accuracy with a fraction of the computational expense of most existing methods by transforming input time series using random convolutional kernels, and using the transformed features to train a linear classifier. We reformulate ROCKET into a new method, MINIROCKET, making it up to 75 times faster on larger datasets, and making it almost deterministic (and optionally, with additional computational expense, fully deterministic), while maintaining essentially the same accuracy. Using this method, it is possible to train and test a classifier on all of 109 datasets from the UCR archive to state-of-the-art accuracy in less than 10 minutes. MINIROCKET is significantly faster than any other method of comparable accuracy (including ROCKET), and significantly more accurate than any other method of even roughly-similar computational expense. As such, we suggest that MINIROCKET should now be considered and used as the default variant of ROCKET.

Please cite as:

@article{dempster_etal_2020,
  author  = {Dempster, Angus and Schmidt, Daniel F and Webb, Geoffrey I},
  title   = {{MINIROCKET}: A Very Fast (Almost) Deterministic Transform for Time Series Classification},
  year    = {2020},
  journal = {arXiv:2012.08791}
}

sktime* / Multivariate

MINIROCKET (including a basic multivariate implementation) is also available through sktime. See the examples.

* for larger datasets (10,000+ training examples), the sktime methods should be integrated with SGD or similar as per softmax.py (replace calls to fit(...) and transform(...) from minirocket.py with calls to the relevant sktime methods as appropriate)

Results

* num_training_examples does not include the validation set of 2,048 training examples, but the transform time for the validation set is included in time_training_seconds

Requirements*

  • Python, NumPy, pandas
  • Numba (0.50+)
  • scikit-learn or similar
  • PyTorch or similar (for larger datasets)

* all pre-packaged with or otherwise available through Anaconda

Code

minirocket.py

minirocket_dv.py (MINIROCKETDV)

softmax.py (PyTorch / 10,000+ Training Examples)

minirocket_multivariate.py (equivalent to sktime/MiniRocketMultivariate)

minirocket_variable.py (variable-length input; experimental)

Important Notes

Compilation

The functions in minirocket.py and minirocket_dv.py are compiled by Numba on import, which may take some time. By default, the compiled functions are now cached, so this should only happen once (i.e., on the first import).

Input Data Type

Input data should be of type np.float32. Alternatively, you can change the Numba signatures to accept, e.g., np.float64.

Normalisation

Unlike ROCKET, MINIROCKET does not require the input time series to be normalised. (However, whether or not it makes sense to normalise the input time series may depend on your particular application.)

Examples

MINIROCKET

from minirocket import fit, transform
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

parameters = fit(X_training)

X_training_transform = transform(X_training, parameters)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test, parameters)

predictions = classifier.predict(X_test_transform)

MINIROCKETDV

from minirocket_dv import fit_transform
from minirocket import transform
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

parameters, X_training_transform = fit_transform(X_training)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test, parameters)

predictions = classifier.predict(X_test_transform)

PyTorch / 10,000+ Training Examples

from softmax import train, predict

model_etc = train("InsectSound_TRAIN_shuffled.csv", num_classes = 10, training_size = 22952)
# note: 22,952 = 25,000 - 2,048 (validation)

predictions, accuracy = predict("InsectSound_TEST.csv", *model_etc)

Variable-Length Input (Experimental)

from minirocket_variable import fit, transform, filter_by_length
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

# special instructions for variable-length input:
# * concatenate variable-length input time series into a single 1d numpy array
# * provide another 1d array with the lengths of each of the input time series
# * input data should be np.float32 (as above); lengths should be np.int32

# optionally, use a different reference length when setting dilation (default is
# the length of the longest time series), and use fit(...) with time series of
# at least this length, e.g.:
# >>> reference_length = X_training_lengths.mean()
# >>> X_training_1d_filtered, X_training_lengths_filtered = \
# >>> filter_by_length(X_training_1d, X_training_lengths, reference_length)
# >>> parameters = fit(X_training_1d_filtered, X_training_lengths_filtered, reference_length)

parameters = fit(X_training_1d, X_training_lengths)

X_training_transform = transform(X_training_1d, X_training_lengths, parameters)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test_1d, X_test_lengths, parameters)

predictions = classifier.predict(X_test_transform)

Acknowledgements

We thank Professor Eamonn Keogh and all the people who have contributed to the UCR time series classification archive. Figures in our paper showing mean ranks were produced using code from Ismail Fawaz et al. (2019).

🚀 🚀 🚀
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022