Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Overview

Image Classification Project Killer in PyTorch

This repo is designed for those who want to start their experiments two days before the deadline and kill the project in the last 6 hours. ๐ŸŒš Inspired by fb.torch.resnet, it provides fast experiment setup and attempts to maximize the number of projects killed within the given time. Please feel free to submit issues or pull requests if you want to contribute.

News

Usage

Both Python 2.7 and 3 are supported; however, it was mainly tested on Python 3. Use python main.py -h to show all arguments.

Training

Train a ResNet-56 on CIFAR-10 with data augmentation using GPU0:

CUDA_VISIBLE_DEVICES=0 python main.py --data cifar10 --data_aug --arch resnet --depth 56 --save save/cifar10 -resnet-56 --epochs 164

Train a ResNet-110 on CIFAR-100 without data augmentation using GPU0 and GPU2:

CUDA_VISIBLE_DEVICES=0,2 python main.py --data cifar100 --arch resnet --depth 110 --save save/cifar100-resnet-110 --epochs 164

See scripts/cifar10.sh and scripts/cifar100.sh for more training examples.

Evaluation

python main.py --resume save/resnet-56/model_best.pth.tar --evaluate test --data cifar10

Adding your custom model

You can write your own model in a .py file and put it into models folder. All you need it to provide a createModel(arg1, arg2, **kwarg) function that returns the model which is an instance of nn.Module. Then you'll be able to use your model by setting --arch your_model_name (assuming that your model is in a the file models/your_model_name).

Show Training & Validation Results

Python script

getbest.py save/* FOLDER_1 FOLDER_2

In short, this script reads the scores.tsv in the saving folders and display the best validation errors of them.

Using Tensorboard

tensorboard --logdir save --port PORT

Features

Experiment Setup & Logging

  • Ask before overwriting existing experiments, and move the old one to /tmp instead of overwriting
  • Saving training/validation loss, errors, and learning rate of each epoch to a TSV file
  • Automatically copying all source code to saving directory to prevent accidental deleteion of codes. This is inspired by SGAN code.
  • TensorBoard support using tensorboard_logger
  • One script to show all experiment results
  • Display training time
  • Holding out testing set and using validation set for hyperparameter tuning experiments
  • GPU support
  • Adding save & data folders to .gitignore to prevent commiting the datasets and trained models
  • Result table
  • Python 2.7 & 3.5 support

Models (See models folder for details)

Datasets

CIFAR

Last 5000 samples in the original training set is used for validation. Each pixel is in [0, 1]. Based on experiments results, normalizing the data to zero mean and unit standard deviation seems to be redundant.

  • CIFAR-10
  • CIFAR-100

Results

Test Error Rate (in percentage) with validation set

The number of parameters are calculated based on CIFAR-10 model. ResNets were training with 164 epochs (the same as the default setting in fb.resnet.torch) and DenseNets were trained 300 epochs. Both are using batch_size=64.

Model Parameters CIFAR-10 CIFAR-10 (aug) CIFAR-100 CIFAR-100 (aug)
ResNet-56 0.86M 6.82
ResNet-110 1.73M
ResNet-110 with Stochastic Depth 1.73M 5.25 24.2
DenseNet-BC-100 (k=12) 0.8M 5.34
DenseNet-BC-190 (k=40) 25.6M
Your model

Top1 Testing Error Rate (in percentage)

Coming soon...

File Descriptions

  • main.py: main script to train or evaluate models
  • train.py: training and evaluation part of the code
  • config: storing configuration of datasets (and maybe other things in the future)
  • utils.pypy: useful functions
  • getbest.py: display the best validation error of each saving folder
  • dataloader.py: defines getDataloaders function which is used to load datasets
  • models: a folder storing all network models. Each script in it should contain a createModel(**kwargs) function that takes the arguments and return a model (subclass of nn.Module) for training
  • scripts: a folder storing example training commands in UNIX shell scripts

Acknowledgement

This code is based on the ImageNet training script provided in PyTorch examples.

The author is not familiar with licensing. Please contact me there is there are any problems with it.

Owner
Felix Wu
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(ไป˜็‡•ๅนณ) 129 Dec 30, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022