PyTorch implementation for 3D human pose estimation

Overview

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach

This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen Wei, Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach ICCV 2017 (arXiv:1704.02447)

Note: This repository has been updated and is different from the method discribed in the paper. To fully reproduce the results in the paper, please checkout the original torch implementation or our pytorch re-implementation branch (slightly worse than torch). We also provide a clean 2D hourglass network branch.

The updates include:

  • Change network backbone to ResNet50 with deconvolution layers (Xiao et al. ECCV2018). Training is now about 3x faster than the original hourglass net backbone (but no significant performance improvement).
  • Change the depth regression sub-network to a one-layer depth map (described in our StarMap project).
  • Change the Human3.6M dataset to official release in ECCV18 challenge.
  • Update from python 2.7 and pytorch 0.1.12 to python 3.6 and pytorch 0.4.1.

Contact: [email protected]

Installation

The code was tested with Anaconda Python 3.6 and PyTorch v0.4.1. After install Anaconda and Pytorch:

  1. Clone the repo:

    POSE_ROOT=/path/to/clone/pytorch-pose-hg-3d
    git clone https://github.com/xingyizhou/pytorch-pose-hg-3d POSE_ROOT
    
  2. Install dependencies (opencv, and progressbar):

    conda install --channel https://conda.anaconda.org/menpo opencv
    conda install --channel https://conda.anaconda.org/auto progress
    
  3. Disable cudnn for batch_norm (see issue):

    # PYTORCH=/path/to/pytorch
    # for pytorch v0.4.0
    sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    # for pytorch v0.4.1
    sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    
  4. Optionally, install tensorboard for visializing training.

    pip install tensorflow
    

Demo

  • Download our pre-trained model and move it to models.
  • Run python demo.py --demo /path/to/image/or/image/folder [--gpus -1] [--load_model /path/to/model].

--gpus -1 is for CPU mode. We provide example images in images/. For testing your own image, it is important that the person should be at the center of the image and most of the body parts should be within the image.

Benchmark Testing

To test our model on Human3.6 dataset run

python main.py --exp_id test --task human3d --dataset fusion_3d --load_model ../models/fusion_3d_var.pth --test --full_test

The expected results should be 64.55mm.

Training

  • Prepare the training data:

    ${POSE_ROOT}
    |-- data
    `-- |-- mpii
        `-- |-- annot
            |   |-- train.json
            |   |-- valid.json
            `-- images
                |-- 000001163.jpg
                |-- 000003072.jpg
    `-- |-- h36m
        `-- |-- ECCV18_Challenge
            |   |-- Train
            |   |-- Val
            `-- msra_cache
                `-- |-- HM36_eccv_challenge_Train_cache
                    |   |-- HM36_eccv_challenge_Train_w288xh384_keypoint_jnt_bbox_db.pkl
                    `-- HM36_eccv_challenge_Val_cache
                        |-- HM36_eccv_challenge_Val_w288xh384_keypoint_jnt_bbox_db.pkl
    
  • Stage1: Train 2D pose only. model, log

python main.py --exp_id mpii
  • Stage2: Train on 2D and 3D data without geometry loss (drop LR at 45 epochs). model, log
python main.py --exp_id fusion_3d --task human3d --dataset fusion_3d --ratio_3d 1 --weight_3d 0.1 --load_model ../exp/mpii/model_last.pth --num_epoch 60 --lr_step 45
  • Stage3: Train with geometry loss. model, log
python main.py --exp_id fusion_3d_var --task human3d --dataset fusion_3d --ratio_3d 1 --weight_3d 0.1 --weight_var 0.01 --load_model ../models/fusion_3d.pth  --num_epoch 10 --lr 1e-4

Citation

@InProceedings{Zhou_2017_ICCV,
author = {Zhou, Xingyi and Huang, Qixing and Sun, Xiao and Xue, Xiangyang and Wei, Yichen},
title = {Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022