PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

Related tags

Deep LearningHAN
Overview

HAN

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

This repository is for HAN introduced in the following paper

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu, "Single Image Super-Resolution via a Holistic Attention Network", ECCV 2020, arxiv

The code is built on RCAN (PyTorch) and tested on Ubuntu 16.04/18.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs.

Contents


  1. Introduction
  2. Train
  3. Test
  4. Acknowledgements

Introduction

Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super- resolution approaches.

Train Prepare training data Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset.

Begin to train

(optional) Download models for our paper and place them in '/HAN/experiment/HAN'. All the models (BIX2/3/4/8, BDX3) can be downloaded from GoogleDrive. You can use scripts in file 'demo.sh' to train models for our paper.

BI, scale 2, 3, 4, 8
#HAN BI model (x2)

python main.py --template HAN --save HANx2 --scale 2 --reset --save_results --patch_size 96 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x3)

python main.py --template HAN --save HANx3 --scale 3 --reset --save_results --patch_size 144 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x4)

python main.py --template HAN --save HANx4 --scale 4 --reset --save_results --patch_size 192 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x8)

python main.py --template HAN --save HANx8 --scale 8 --reset --save_results --patch_size 384 --pre_train ../experiment/model/RCAN_BIX2.pt

Begin to Test

Quick start

Download models for our paper and place them in '/experiment/HAN'.

Cd to '/HAN/src', run the following scripts.
#test
python main.py --template HAN --data_test Set5+Set14+B100+Urban100+Manga109 --data_range 801-900 --scale 2 --pre_train ../experiment/HAN/HAN_BIX2.pt --test_only --save HANx2_test --save_results

All the models (BIX2/3/4/8, BDX3) can be downloaded from GoogleDrive.

The whole test pipeline

1.Prepare test data.

Place the original test sets in '/dataset/x4/test'.

Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

2.Conduct image SR.

See Quick start

3.Evaluate the results.

Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Acknowledgements

This code is built on RCAN. We thank the authors for sharing their codes of RCAN PyTorch version.

Owner
五维空间
五维空间
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023