Nest - A flexible tool for building and sharing deep learning modules

Overview

Nest - A flexible tool for building and sharing deep learning modules

Nest is a flexible deep learning module manager, which aims at encouraging code reuse and sharing. It ships with a bunch of useful features, such as CLI based module management, runtime checking, and experimental task runner, etc. You can integrate Nest with PyTorch, Tensorflow, MXNet, or any deep learning framework you like that provides a python interface.

Moreover, a set of Pytorch-backend Nest modules, e.g., network trainer, data loader, optimizer, dataset, visdom logging, are already provided. More modules and framework support will be added later.


Prerequisites

  • System (tested on Ubuntu 14.04LTS, Win10, and MacOS High Sierra)
  • Python >= 3.5.4
  • Git

Installation

# directly install via pip
pip install git+https://github.com/ZhouYanzhao/Nest.git

# manually download and install
git clone https://github.com/ZhouYanzhao/Nest.git
pip install ./Nest

Basic Usage

The official website and documentation are under construction.

Create your first Nest module

  1. Create "hello.py" under your current path with the following content:

    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def hello_nest(name: str) -> str:
        """My first Nest module!"""
    
        return 'Hello ' + name

    Note that the type of module parameters and return values must be clearly defined. This helps the user to better understand the module, and at runtime Nest automatically checks whether each module receives and outputs as expected, thus helping you to identify potential bugs earlier.

  2. Execute the following command in your shell to verify the module:

    str # Documentation: # My first Nest module! # author: Yanzhao # module_path: /Users/yanzhao/Workspace/Nest.doc # version: 1.0.0 ">
    $ nest module list -v
    # Output:
    # 
    # 1 Nest module found.
    # [0] main.hello_nest (1.0.0) by "Yanzhao":
    #     hello_nest(
    #         name:str) -> str
    
    # Documentation:
    #     My first Nest module!
    #     author: Yanzhao
    #     module_path: /Users/yanzhao/Workspace/Nest.doc
    #     version: 1.0.0 

    Note that all modules under current path are registered under the "main" namespace.

    With the CLI tool, you can easily manage Nest modules. Execute nest -h for more details.

  3. That's it. You just created a simple Nest module!

Use your Nest module in Python

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >> modules.hello_nest('Yanzhao', wrong=True) # Output: # # Unexpected param(s) "wrong" for Nest module: # hello_nest( # name:str) -> str ">
    >>> from nest import modules
    >>> print(modules.hello_nest) # access the module
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['*_nes?']) # wildcard search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['r/main.\w+_nest']) # regex search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> modules.hello_nest('Yanzhao') # use the module
    # Output:
    #
    # 'Hello Yanzhao'
    >>> modules.hello_nest(123) # runtime type checking
    # Output:
    #
    # TypeError: The param "name" of Nest module "hello_nest" should be type of "str". Got "123".
    >>> modules.hello_nest('Yanzhao', wrong=True)
    # Output:
    #
    # Unexpected param(s) "wrong" for Nest module:
    # hello_nest(
    # name:str) -> str

    Note that Nest automatically imports modules and checks them as they are used to make sure everything is as expected.

  2. You can also directly import modules like this:

    >>> from nest.main.hello import hello_nest
    >>> hello_nest('World')
    # Output:
    #
    # 'Hello World'

    The import syntax is from nest. . import

  3. Access to Nest modules through code is flexible and easy.

Debug your Nest modules

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >>> from nest import modules
    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Hello Yanzhao'
  2. Keep the interpreter OPEN and use an externel editor to modify the "hello.py":

    # change Line7 from "return 'Hello ' + name" to
    return 'Nice to meet you, ' + name
  3. Back to the interpreter and rerun the same command:

    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Nice to meet you, Yanzhao'

    Note that Nest detects source file modifications and automatically reloads the module.

  4. You can use this feature to develop and debug your Nest modules efficiently.

Install Nest modules from local path

  1. Create a folder my_namespace and move the hello.py into it:

    $ mkdir my_namespace
    $ mv hello.py ./my_namespace/
  2. Create a new file more.py under the folder my_namespace with the following content:

    float: """Multiply two numbers.""" return a * b ">
    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def sum(a: int, b: int) -> int:
        """Sum two numbers."""
    
        return a + b
    
    # There is no need to repeatedly declare meta information
    # as modules within the same file automatically reuse the 
    # previous information. But overriding is also supported.
    @register(version='2.0.0')
    def mul(a: float, b: float) -> float:
        """Multiply two numbers."""
        
        return a * b

    Now we have:

    current path/
    ├── my_namespace/
    │   ├── hello.py
    │   ├── more.py
    
  3. Run the following command in the shell:

    Search paths. Continue? (Y/n) [Press ] ">
    $ nest module install ./my_namespace hello_word
    # Output:
    #
    # Install "./my_namespace/" -> Search paths. Continue? (Y/n) [Press 
          
           ]
          

    This command will add "my_namespace" folder to Nest's search path, and register all Nest modules in it under the namespace "hello_word". If the last argument is omitted, the directory name, "my_namespace" in this case, is used as the namespace.

  4. Verify the installation via CLI:

    $ nest module list
    # Output:
    #
    # 3 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)

    Note that those Nest modules can now be accessed regardless of your working path.

  5. Verify the installation via Python interpreter:

    $ ipython # open IPython interpreter
    >>> from nest import modules
    >>> print(len(modules))
    # Output:
    #
    # 3
    >>> modules.[Press <Tab>] # IPython Auto-completion
    # Output:
    #
    # hello_nest
    # mul
    # sum
    >>> modules.sum(3, 2)
    # Output:
    #
    # 5
    >>> modules.mul(2.5, 4.0)
    # Output:
    #
    # 10.0
  6. Thanks to the auto-import feature of Nest, you can easily share modules between different local projects.

Install Nest modules from URL

  1. You can use the CLI tool to install modules from URL:

    # select one of the following commands to execute
    # 0. install from Github repo via short URL (GitLab, Bitbucket are also supported)
    $ nest module install [email protected]/Nest:pytorch pytorch
    # 1. install from Git repo
    $ nest module install "-b pytorch https://github.com/ZhouYanzhao/Nest.git" pytorch
    # 2. install from zip file URL
    $ nest module install "https://github.com/ZhouYanzhao/Nest/archive/pytorch.zip" pytorch

    The last optional argument is used to specify the namespace, "pytorch" in this case.

  2. Verify the installation:

    $ nest module list
    # Output:
    #
    # 26 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)
    # [3] pytorch.adadelta_optimizer (0.1.0)
    # [4] pytorch.checkpoint (0.1.0)
    # [5] pytorch.cross_entropy_loss (0.1.0)
    # [6] pytorch.fetch_data (0.1.0)
    # [7] pytorch.finetune (0.1.0)
    # [8] pytorch.image_transform (0.1.0)
    # ...

Uninstall Nest modules

  1. You can remove modules from Nest's search path by executing:

    # given namespace
    $ nest module remove hello_world
    # given path to the namespace
    $ nest module remove ./my_namespace/
  2. You can also delete the corresponding files by appending a --delete or -d flag:

    $ nest module remove hello_world --delete

Version control Nest modules

  1. When installing modules, Nest adds the namespace to its search path without modifying or moving the original files. So you can use any version control system you like, e.g., Git, to manage modules. For example:

    $ cd <path of the namespace>
    # update modules
    $ git pull
    # specify version
    $ git checkout v1.0
  2. When developing a Nest module, it is recommended to define meta information for the module, such as the author, version, requirements, etc. Those information will be used by Nest's CLI tool. There are two ways to set meta information:

    • define meta information in code
    from nest import register
    
    @register(author='Yanzhao', version='1.0')
    def my_module() -> None:
        """My Module"""
        pass
    • define meta information in a nest.yml under the path of namespace
    author: Yanzhao
    version: 1.0
    requirements:
        - {url: opencv, tool: conda}
        # default tool is pip
        - torch>=0.4

    Note that you can use both ways at the same time.

Use Nest to manage your experiments

  1. Make sure you have Pytorch-backend modules installed, and if not, execute the following command:

    $ nest module install [email protected]/Nest:pytorch pytorch
  2. Create "train_mnist.yml" with the following content:

    _name: network_trainer
    data_loaders:
      _name: fetch_data
      dataset: 
        _name: mnist
        data_dir: ./data
      batch_size: 128
      num_workers: 4
      transform:
        _name: image_transform
        image_size: 28
        mean: [0.1307]
        std: [0.3081]
      train_splits: [train]
      test_splits: [test]
    model:
      _name: lenet5
    criterion:
      _name: cross_entropy_loss
    optimizer:
      _name: adadelta_optimizer
    meters:
      top1:
        _name: topk_meter
        k: 1
    max_epoch: 10
    device: cpu
    hooks:
      on_end_epoch: 
        - 
          _name: print_state
          formats:
            - 'epoch: {epoch_idx}'
            - 'train_acc: {metrics[train_top1]:.1f}%'
            - 'test_acc: {metrics[test_top1]:.1f}%'   

    Check HERE for more comprehensive demos.

  3. Run your experiments through CLI:

    $ nest task run ./train_mnist.yml
  4. You can also use Nest's task runner in your code:

    >>> from nest import run_tasks
    >>> run_tasks('./train_mnist.yml')
  5. Based on the task runner feature, Nest modules can be flexibly replaced and assembled to create your desired experiment settings.

Contact

Yanzhao Zhou

Issues

Feel free to submit bug reports and feature requests.

Contribution

Pull requests are welcome.

License

MIT

Copyright © 2018-present, Yanzhao Zhou

Owner
ZhouYanzhao
ZhouYanzhao
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023