Nest - A flexible tool for building and sharing deep learning modules

Overview

Nest - A flexible tool for building and sharing deep learning modules

Nest is a flexible deep learning module manager, which aims at encouraging code reuse and sharing. It ships with a bunch of useful features, such as CLI based module management, runtime checking, and experimental task runner, etc. You can integrate Nest with PyTorch, Tensorflow, MXNet, or any deep learning framework you like that provides a python interface.

Moreover, a set of Pytorch-backend Nest modules, e.g., network trainer, data loader, optimizer, dataset, visdom logging, are already provided. More modules and framework support will be added later.


Prerequisites

  • System (tested on Ubuntu 14.04LTS, Win10, and MacOS High Sierra)
  • Python >= 3.5.4
  • Git

Installation

# directly install via pip
pip install git+https://github.com/ZhouYanzhao/Nest.git

# manually download and install
git clone https://github.com/ZhouYanzhao/Nest.git
pip install ./Nest

Basic Usage

The official website and documentation are under construction.

Create your first Nest module

  1. Create "hello.py" under your current path with the following content:

    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def hello_nest(name: str) -> str:
        """My first Nest module!"""
    
        return 'Hello ' + name

    Note that the type of module parameters and return values must be clearly defined. This helps the user to better understand the module, and at runtime Nest automatically checks whether each module receives and outputs as expected, thus helping you to identify potential bugs earlier.

  2. Execute the following command in your shell to verify the module:

    str # Documentation: # My first Nest module! # author: Yanzhao # module_path: /Users/yanzhao/Workspace/Nest.doc # version: 1.0.0 ">
    $ nest module list -v
    # Output:
    # 
    # 1 Nest module found.
    # [0] main.hello_nest (1.0.0) by "Yanzhao":
    #     hello_nest(
    #         name:str) -> str
    
    # Documentation:
    #     My first Nest module!
    #     author: Yanzhao
    #     module_path: /Users/yanzhao/Workspace/Nest.doc
    #     version: 1.0.0 

    Note that all modules under current path are registered under the "main" namespace.

    With the CLI tool, you can easily manage Nest modules. Execute nest -h for more details.

  3. That's it. You just created a simple Nest module!

Use your Nest module in Python

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >> modules.hello_nest('Yanzhao', wrong=True) # Output: # # Unexpected param(s) "wrong" for Nest module: # hello_nest( # name:str) -> str ">
    >>> from nest import modules
    >>> print(modules.hello_nest) # access the module
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['*_nes?']) # wildcard search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['r/main.\w+_nest']) # regex search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> modules.hello_nest('Yanzhao') # use the module
    # Output:
    #
    # 'Hello Yanzhao'
    >>> modules.hello_nest(123) # runtime type checking
    # Output:
    #
    # TypeError: The param "name" of Nest module "hello_nest" should be type of "str". Got "123".
    >>> modules.hello_nest('Yanzhao', wrong=True)
    # Output:
    #
    # Unexpected param(s) "wrong" for Nest module:
    # hello_nest(
    # name:str) -> str

    Note that Nest automatically imports modules and checks them as they are used to make sure everything is as expected.

  2. You can also directly import modules like this:

    >>> from nest.main.hello import hello_nest
    >>> hello_nest('World')
    # Output:
    #
    # 'Hello World'

    The import syntax is from nest. . import

  3. Access to Nest modules through code is flexible and easy.

Debug your Nest modules

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >>> from nest import modules
    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Hello Yanzhao'
  2. Keep the interpreter OPEN and use an externel editor to modify the "hello.py":

    # change Line7 from "return 'Hello ' + name" to
    return 'Nice to meet you, ' + name
  3. Back to the interpreter and rerun the same command:

    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Nice to meet you, Yanzhao'

    Note that Nest detects source file modifications and automatically reloads the module.

  4. You can use this feature to develop and debug your Nest modules efficiently.

Install Nest modules from local path

  1. Create a folder my_namespace and move the hello.py into it:

    $ mkdir my_namespace
    $ mv hello.py ./my_namespace/
  2. Create a new file more.py under the folder my_namespace with the following content:

    float: """Multiply two numbers.""" return a * b ">
    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def sum(a: int, b: int) -> int:
        """Sum two numbers."""
    
        return a + b
    
    # There is no need to repeatedly declare meta information
    # as modules within the same file automatically reuse the 
    # previous information. But overriding is also supported.
    @register(version='2.0.0')
    def mul(a: float, b: float) -> float:
        """Multiply two numbers."""
        
        return a * b

    Now we have:

    current path/
    ├── my_namespace/
    │   ├── hello.py
    │   ├── more.py
    
  3. Run the following command in the shell:

    Search paths. Continue? (Y/n) [Press ] ">
    $ nest module install ./my_namespace hello_word
    # Output:
    #
    # Install "./my_namespace/" -> Search paths. Continue? (Y/n) [Press 
          
           ]
          

    This command will add "my_namespace" folder to Nest's search path, and register all Nest modules in it under the namespace "hello_word". If the last argument is omitted, the directory name, "my_namespace" in this case, is used as the namespace.

  4. Verify the installation via CLI:

    $ nest module list
    # Output:
    #
    # 3 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)

    Note that those Nest modules can now be accessed regardless of your working path.

  5. Verify the installation via Python interpreter:

    $ ipython # open IPython interpreter
    >>> from nest import modules
    >>> print(len(modules))
    # Output:
    #
    # 3
    >>> modules.[Press <Tab>] # IPython Auto-completion
    # Output:
    #
    # hello_nest
    # mul
    # sum
    >>> modules.sum(3, 2)
    # Output:
    #
    # 5
    >>> modules.mul(2.5, 4.0)
    # Output:
    #
    # 10.0
  6. Thanks to the auto-import feature of Nest, you can easily share modules between different local projects.

Install Nest modules from URL

  1. You can use the CLI tool to install modules from URL:

    # select one of the following commands to execute
    # 0. install from Github repo via short URL (GitLab, Bitbucket are also supported)
    $ nest module install [email protected]/Nest:pytorch pytorch
    # 1. install from Git repo
    $ nest module install "-b pytorch https://github.com/ZhouYanzhao/Nest.git" pytorch
    # 2. install from zip file URL
    $ nest module install "https://github.com/ZhouYanzhao/Nest/archive/pytorch.zip" pytorch

    The last optional argument is used to specify the namespace, "pytorch" in this case.

  2. Verify the installation:

    $ nest module list
    # Output:
    #
    # 26 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)
    # [3] pytorch.adadelta_optimizer (0.1.0)
    # [4] pytorch.checkpoint (0.1.0)
    # [5] pytorch.cross_entropy_loss (0.1.0)
    # [6] pytorch.fetch_data (0.1.0)
    # [7] pytorch.finetune (0.1.0)
    # [8] pytorch.image_transform (0.1.0)
    # ...

Uninstall Nest modules

  1. You can remove modules from Nest's search path by executing:

    # given namespace
    $ nest module remove hello_world
    # given path to the namespace
    $ nest module remove ./my_namespace/
  2. You can also delete the corresponding files by appending a --delete or -d flag:

    $ nest module remove hello_world --delete

Version control Nest modules

  1. When installing modules, Nest adds the namespace to its search path without modifying or moving the original files. So you can use any version control system you like, e.g., Git, to manage modules. For example:

    $ cd <path of the namespace>
    # update modules
    $ git pull
    # specify version
    $ git checkout v1.0
  2. When developing a Nest module, it is recommended to define meta information for the module, such as the author, version, requirements, etc. Those information will be used by Nest's CLI tool. There are two ways to set meta information:

    • define meta information in code
    from nest import register
    
    @register(author='Yanzhao', version='1.0')
    def my_module() -> None:
        """My Module"""
        pass
    • define meta information in a nest.yml under the path of namespace
    author: Yanzhao
    version: 1.0
    requirements:
        - {url: opencv, tool: conda}
        # default tool is pip
        - torch>=0.4

    Note that you can use both ways at the same time.

Use Nest to manage your experiments

  1. Make sure you have Pytorch-backend modules installed, and if not, execute the following command:

    $ nest module install [email protected]/Nest:pytorch pytorch
  2. Create "train_mnist.yml" with the following content:

    _name: network_trainer
    data_loaders:
      _name: fetch_data
      dataset: 
        _name: mnist
        data_dir: ./data
      batch_size: 128
      num_workers: 4
      transform:
        _name: image_transform
        image_size: 28
        mean: [0.1307]
        std: [0.3081]
      train_splits: [train]
      test_splits: [test]
    model:
      _name: lenet5
    criterion:
      _name: cross_entropy_loss
    optimizer:
      _name: adadelta_optimizer
    meters:
      top1:
        _name: topk_meter
        k: 1
    max_epoch: 10
    device: cpu
    hooks:
      on_end_epoch: 
        - 
          _name: print_state
          formats:
            - 'epoch: {epoch_idx}'
            - 'train_acc: {metrics[train_top1]:.1f}%'
            - 'test_acc: {metrics[test_top1]:.1f}%'   

    Check HERE for more comprehensive demos.

  3. Run your experiments through CLI:

    $ nest task run ./train_mnist.yml
  4. You can also use Nest's task runner in your code:

    >>> from nest import run_tasks
    >>> run_tasks('./train_mnist.yml')
  5. Based on the task runner feature, Nest modules can be flexibly replaced and assembled to create your desired experiment settings.

Contact

Yanzhao Zhou

Issues

Feel free to submit bug reports and feature requests.

Contribution

Pull requests are welcome.

License

MIT

Copyright © 2018-present, Yanzhao Zhou

Owner
ZhouYanzhao
ZhouYanzhao
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022