Nest - A flexible tool for building and sharing deep learning modules

Overview

Nest - A flexible tool for building and sharing deep learning modules

Nest is a flexible deep learning module manager, which aims at encouraging code reuse and sharing. It ships with a bunch of useful features, such as CLI based module management, runtime checking, and experimental task runner, etc. You can integrate Nest with PyTorch, Tensorflow, MXNet, or any deep learning framework you like that provides a python interface.

Moreover, a set of Pytorch-backend Nest modules, e.g., network trainer, data loader, optimizer, dataset, visdom logging, are already provided. More modules and framework support will be added later.


Prerequisites

  • System (tested on Ubuntu 14.04LTS, Win10, and MacOS High Sierra)
  • Python >= 3.5.4
  • Git

Installation

# directly install via pip
pip install git+https://github.com/ZhouYanzhao/Nest.git

# manually download and install
git clone https://github.com/ZhouYanzhao/Nest.git
pip install ./Nest

Basic Usage

The official website and documentation are under construction.

Create your first Nest module

  1. Create "hello.py" under your current path with the following content:

    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def hello_nest(name: str) -> str:
        """My first Nest module!"""
    
        return 'Hello ' + name

    Note that the type of module parameters and return values must be clearly defined. This helps the user to better understand the module, and at runtime Nest automatically checks whether each module receives and outputs as expected, thus helping you to identify potential bugs earlier.

  2. Execute the following command in your shell to verify the module:

    str # Documentation: # My first Nest module! # author: Yanzhao # module_path: /Users/yanzhao/Workspace/Nest.doc # version: 1.0.0 ">
    $ nest module list -v
    # Output:
    # 
    # 1 Nest module found.
    # [0] main.hello_nest (1.0.0) by "Yanzhao":
    #     hello_nest(
    #         name:str) -> str
    
    # Documentation:
    #     My first Nest module!
    #     author: Yanzhao
    #     module_path: /Users/yanzhao/Workspace/Nest.doc
    #     version: 1.0.0 

    Note that all modules under current path are registered under the "main" namespace.

    With the CLI tool, you can easily manage Nest modules. Execute nest -h for more details.

  3. That's it. You just created a simple Nest module!

Use your Nest module in Python

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >> modules.hello_nest('Yanzhao', wrong=True) # Output: # # Unexpected param(s) "wrong" for Nest module: # hello_nest( # name:str) -> str ">
    >>> from nest import modules
    >>> print(modules.hello_nest) # access the module
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['*_nes?']) # wildcard search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['r/main.\w+_nest']) # regex search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> modules.hello_nest('Yanzhao') # use the module
    # Output:
    #
    # 'Hello Yanzhao'
    >>> modules.hello_nest(123) # runtime type checking
    # Output:
    #
    # TypeError: The param "name" of Nest module "hello_nest" should be type of "str". Got "123".
    >>> modules.hello_nest('Yanzhao', wrong=True)
    # Output:
    #
    # Unexpected param(s) "wrong" for Nest module:
    # hello_nest(
    # name:str) -> str

    Note that Nest automatically imports modules and checks them as they are used to make sure everything is as expected.

  2. You can also directly import modules like this:

    >>> from nest.main.hello import hello_nest
    >>> hello_nest('World')
    # Output:
    #
    # 'Hello World'

    The import syntax is from nest. . import

  3. Access to Nest modules through code is flexible and easy.

Debug your Nest modules

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >>> from nest import modules
    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Hello Yanzhao'
  2. Keep the interpreter OPEN and use an externel editor to modify the "hello.py":

    # change Line7 from "return 'Hello ' + name" to
    return 'Nice to meet you, ' + name
  3. Back to the interpreter and rerun the same command:

    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Nice to meet you, Yanzhao'

    Note that Nest detects source file modifications and automatically reloads the module.

  4. You can use this feature to develop and debug your Nest modules efficiently.

Install Nest modules from local path

  1. Create a folder my_namespace and move the hello.py into it:

    $ mkdir my_namespace
    $ mv hello.py ./my_namespace/
  2. Create a new file more.py under the folder my_namespace with the following content:

    float: """Multiply two numbers.""" return a * b ">
    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def sum(a: int, b: int) -> int:
        """Sum two numbers."""
    
        return a + b
    
    # There is no need to repeatedly declare meta information
    # as modules within the same file automatically reuse the 
    # previous information. But overriding is also supported.
    @register(version='2.0.0')
    def mul(a: float, b: float) -> float:
        """Multiply two numbers."""
        
        return a * b

    Now we have:

    current path/
    ├── my_namespace/
    │   ├── hello.py
    │   ├── more.py
    
  3. Run the following command in the shell:

    Search paths. Continue? (Y/n) [Press ] ">
    $ nest module install ./my_namespace hello_word
    # Output:
    #
    # Install "./my_namespace/" -> Search paths. Continue? (Y/n) [Press 
          
           ]
          

    This command will add "my_namespace" folder to Nest's search path, and register all Nest modules in it under the namespace "hello_word". If the last argument is omitted, the directory name, "my_namespace" in this case, is used as the namespace.

  4. Verify the installation via CLI:

    $ nest module list
    # Output:
    #
    # 3 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)

    Note that those Nest modules can now be accessed regardless of your working path.

  5. Verify the installation via Python interpreter:

    $ ipython # open IPython interpreter
    >>> from nest import modules
    >>> print(len(modules))
    # Output:
    #
    # 3
    >>> modules.[Press <Tab>] # IPython Auto-completion
    # Output:
    #
    # hello_nest
    # mul
    # sum
    >>> modules.sum(3, 2)
    # Output:
    #
    # 5
    >>> modules.mul(2.5, 4.0)
    # Output:
    #
    # 10.0
  6. Thanks to the auto-import feature of Nest, you can easily share modules between different local projects.

Install Nest modules from URL

  1. You can use the CLI tool to install modules from URL:

    # select one of the following commands to execute
    # 0. install from Github repo via short URL (GitLab, Bitbucket are also supported)
    $ nest module install [email protected]/Nest:pytorch pytorch
    # 1. install from Git repo
    $ nest module install "-b pytorch https://github.com/ZhouYanzhao/Nest.git" pytorch
    # 2. install from zip file URL
    $ nest module install "https://github.com/ZhouYanzhao/Nest/archive/pytorch.zip" pytorch

    The last optional argument is used to specify the namespace, "pytorch" in this case.

  2. Verify the installation:

    $ nest module list
    # Output:
    #
    # 26 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)
    # [3] pytorch.adadelta_optimizer (0.1.0)
    # [4] pytorch.checkpoint (0.1.0)
    # [5] pytorch.cross_entropy_loss (0.1.0)
    # [6] pytorch.fetch_data (0.1.0)
    # [7] pytorch.finetune (0.1.0)
    # [8] pytorch.image_transform (0.1.0)
    # ...

Uninstall Nest modules

  1. You can remove modules from Nest's search path by executing:

    # given namespace
    $ nest module remove hello_world
    # given path to the namespace
    $ nest module remove ./my_namespace/
  2. You can also delete the corresponding files by appending a --delete or -d flag:

    $ nest module remove hello_world --delete

Version control Nest modules

  1. When installing modules, Nest adds the namespace to its search path without modifying or moving the original files. So you can use any version control system you like, e.g., Git, to manage modules. For example:

    $ cd <path of the namespace>
    # update modules
    $ git pull
    # specify version
    $ git checkout v1.0
  2. When developing a Nest module, it is recommended to define meta information for the module, such as the author, version, requirements, etc. Those information will be used by Nest's CLI tool. There are two ways to set meta information:

    • define meta information in code
    from nest import register
    
    @register(author='Yanzhao', version='1.0')
    def my_module() -> None:
        """My Module"""
        pass
    • define meta information in a nest.yml under the path of namespace
    author: Yanzhao
    version: 1.0
    requirements:
        - {url: opencv, tool: conda}
        # default tool is pip
        - torch>=0.4

    Note that you can use both ways at the same time.

Use Nest to manage your experiments

  1. Make sure you have Pytorch-backend modules installed, and if not, execute the following command:

    $ nest module install [email protected]/Nest:pytorch pytorch
  2. Create "train_mnist.yml" with the following content:

    _name: network_trainer
    data_loaders:
      _name: fetch_data
      dataset: 
        _name: mnist
        data_dir: ./data
      batch_size: 128
      num_workers: 4
      transform:
        _name: image_transform
        image_size: 28
        mean: [0.1307]
        std: [0.3081]
      train_splits: [train]
      test_splits: [test]
    model:
      _name: lenet5
    criterion:
      _name: cross_entropy_loss
    optimizer:
      _name: adadelta_optimizer
    meters:
      top1:
        _name: topk_meter
        k: 1
    max_epoch: 10
    device: cpu
    hooks:
      on_end_epoch: 
        - 
          _name: print_state
          formats:
            - 'epoch: {epoch_idx}'
            - 'train_acc: {metrics[train_top1]:.1f}%'
            - 'test_acc: {metrics[test_top1]:.1f}%'   

    Check HERE for more comprehensive demos.

  3. Run your experiments through CLI:

    $ nest task run ./train_mnist.yml
  4. You can also use Nest's task runner in your code:

    >>> from nest import run_tasks
    >>> run_tasks('./train_mnist.yml')
  5. Based on the task runner feature, Nest modules can be flexibly replaced and assembled to create your desired experiment settings.

Contact

Yanzhao Zhou

Issues

Feel free to submit bug reports and feature requests.

Contribution

Pull requests are welcome.

License

MIT

Copyright © 2018-present, Yanzhao Zhou

Owner
ZhouYanzhao
ZhouYanzhao
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022