Nest - A flexible tool for building and sharing deep learning modules

Overview

Nest - A flexible tool for building and sharing deep learning modules

Nest is a flexible deep learning module manager, which aims at encouraging code reuse and sharing. It ships with a bunch of useful features, such as CLI based module management, runtime checking, and experimental task runner, etc. You can integrate Nest with PyTorch, Tensorflow, MXNet, or any deep learning framework you like that provides a python interface.

Moreover, a set of Pytorch-backend Nest modules, e.g., network trainer, data loader, optimizer, dataset, visdom logging, are already provided. More modules and framework support will be added later.


Prerequisites

  • System (tested on Ubuntu 14.04LTS, Win10, and MacOS High Sierra)
  • Python >= 3.5.4
  • Git

Installation

# directly install via pip
pip install git+https://github.com/ZhouYanzhao/Nest.git

# manually download and install
git clone https://github.com/ZhouYanzhao/Nest.git
pip install ./Nest

Basic Usage

The official website and documentation are under construction.

Create your first Nest module

  1. Create "hello.py" under your current path with the following content:

    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def hello_nest(name: str) -> str:
        """My first Nest module!"""
    
        return 'Hello ' + name

    Note that the type of module parameters and return values must be clearly defined. This helps the user to better understand the module, and at runtime Nest automatically checks whether each module receives and outputs as expected, thus helping you to identify potential bugs earlier.

  2. Execute the following command in your shell to verify the module:

    str # Documentation: # My first Nest module! # author: Yanzhao # module_path: /Users/yanzhao/Workspace/Nest.doc # version: 1.0.0 ">
    $ nest module list -v
    # Output:
    # 
    # 1 Nest module found.
    # [0] main.hello_nest (1.0.0) by "Yanzhao":
    #     hello_nest(
    #         name:str) -> str
    
    # Documentation:
    #     My first Nest module!
    #     author: Yanzhao
    #     module_path: /Users/yanzhao/Workspace/Nest.doc
    #     version: 1.0.0 

    Note that all modules under current path are registered under the "main" namespace.

    With the CLI tool, you can easily manage Nest modules. Execute nest -h for more details.

  3. That's it. You just created a simple Nest module!

Use your Nest module in Python

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >> modules.hello_nest('Yanzhao', wrong=True) # Output: # # Unexpected param(s) "wrong" for Nest module: # hello_nest( # name:str) -> str ">
    >>> from nest import modules
    >>> print(modules.hello_nest) # access the module
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['*_nes?']) # wildcard search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['r/main.\w+_nest']) # regex search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> modules.hello_nest('Yanzhao') # use the module
    # Output:
    #
    # 'Hello Yanzhao'
    >>> modules.hello_nest(123) # runtime type checking
    # Output:
    #
    # TypeError: The param "name" of Nest module "hello_nest" should be type of "str". Got "123".
    >>> modules.hello_nest('Yanzhao', wrong=True)
    # Output:
    #
    # Unexpected param(s) "wrong" for Nest module:
    # hello_nest(
    # name:str) -> str

    Note that Nest automatically imports modules and checks them as they are used to make sure everything is as expected.

  2. You can also directly import modules like this:

    >>> from nest.main.hello import hello_nest
    >>> hello_nest('World')
    # Output:
    #
    # 'Hello World'

    The import syntax is from nest. . import

  3. Access to Nest modules through code is flexible and easy.

Debug your Nest modules

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >>> from nest import modules
    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Hello Yanzhao'
  2. Keep the interpreter OPEN and use an externel editor to modify the "hello.py":

    # change Line7 from "return 'Hello ' + name" to
    return 'Nice to meet you, ' + name
  3. Back to the interpreter and rerun the same command:

    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Nice to meet you, Yanzhao'

    Note that Nest detects source file modifications and automatically reloads the module.

  4. You can use this feature to develop and debug your Nest modules efficiently.

Install Nest modules from local path

  1. Create a folder my_namespace and move the hello.py into it:

    $ mkdir my_namespace
    $ mv hello.py ./my_namespace/
  2. Create a new file more.py under the folder my_namespace with the following content:

    float: """Multiply two numbers.""" return a * b ">
    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def sum(a: int, b: int) -> int:
        """Sum two numbers."""
    
        return a + b
    
    # There is no need to repeatedly declare meta information
    # as modules within the same file automatically reuse the 
    # previous information. But overriding is also supported.
    @register(version='2.0.0')
    def mul(a: float, b: float) -> float:
        """Multiply two numbers."""
        
        return a * b

    Now we have:

    current path/
    ├── my_namespace/
    │   ├── hello.py
    │   ├── more.py
    
  3. Run the following command in the shell:

    Search paths. Continue? (Y/n) [Press ] ">
    $ nest module install ./my_namespace hello_word
    # Output:
    #
    # Install "./my_namespace/" -> Search paths. Continue? (Y/n) [Press 
          
           ]
          

    This command will add "my_namespace" folder to Nest's search path, and register all Nest modules in it under the namespace "hello_word". If the last argument is omitted, the directory name, "my_namespace" in this case, is used as the namespace.

  4. Verify the installation via CLI:

    $ nest module list
    # Output:
    #
    # 3 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)

    Note that those Nest modules can now be accessed regardless of your working path.

  5. Verify the installation via Python interpreter:

    $ ipython # open IPython interpreter
    >>> from nest import modules
    >>> print(len(modules))
    # Output:
    #
    # 3
    >>> modules.[Press <Tab>] # IPython Auto-completion
    # Output:
    #
    # hello_nest
    # mul
    # sum
    >>> modules.sum(3, 2)
    # Output:
    #
    # 5
    >>> modules.mul(2.5, 4.0)
    # Output:
    #
    # 10.0
  6. Thanks to the auto-import feature of Nest, you can easily share modules between different local projects.

Install Nest modules from URL

  1. You can use the CLI tool to install modules from URL:

    # select one of the following commands to execute
    # 0. install from Github repo via short URL (GitLab, Bitbucket are also supported)
    $ nest module install [email protected]/Nest:pytorch pytorch
    # 1. install from Git repo
    $ nest module install "-b pytorch https://github.com/ZhouYanzhao/Nest.git" pytorch
    # 2. install from zip file URL
    $ nest module install "https://github.com/ZhouYanzhao/Nest/archive/pytorch.zip" pytorch

    The last optional argument is used to specify the namespace, "pytorch" in this case.

  2. Verify the installation:

    $ nest module list
    # Output:
    #
    # 26 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)
    # [3] pytorch.adadelta_optimizer (0.1.0)
    # [4] pytorch.checkpoint (0.1.0)
    # [5] pytorch.cross_entropy_loss (0.1.0)
    # [6] pytorch.fetch_data (0.1.0)
    # [7] pytorch.finetune (0.1.0)
    # [8] pytorch.image_transform (0.1.0)
    # ...

Uninstall Nest modules

  1. You can remove modules from Nest's search path by executing:

    # given namespace
    $ nest module remove hello_world
    # given path to the namespace
    $ nest module remove ./my_namespace/
  2. You can also delete the corresponding files by appending a --delete or -d flag:

    $ nest module remove hello_world --delete

Version control Nest modules

  1. When installing modules, Nest adds the namespace to its search path without modifying or moving the original files. So you can use any version control system you like, e.g., Git, to manage modules. For example:

    $ cd <path of the namespace>
    # update modules
    $ git pull
    # specify version
    $ git checkout v1.0
  2. When developing a Nest module, it is recommended to define meta information for the module, such as the author, version, requirements, etc. Those information will be used by Nest's CLI tool. There are two ways to set meta information:

    • define meta information in code
    from nest import register
    
    @register(author='Yanzhao', version='1.0')
    def my_module() -> None:
        """My Module"""
        pass
    • define meta information in a nest.yml under the path of namespace
    author: Yanzhao
    version: 1.0
    requirements:
        - {url: opencv, tool: conda}
        # default tool is pip
        - torch>=0.4

    Note that you can use both ways at the same time.

Use Nest to manage your experiments

  1. Make sure you have Pytorch-backend modules installed, and if not, execute the following command:

    $ nest module install [email protected]/Nest:pytorch pytorch
  2. Create "train_mnist.yml" with the following content:

    _name: network_trainer
    data_loaders:
      _name: fetch_data
      dataset: 
        _name: mnist
        data_dir: ./data
      batch_size: 128
      num_workers: 4
      transform:
        _name: image_transform
        image_size: 28
        mean: [0.1307]
        std: [0.3081]
      train_splits: [train]
      test_splits: [test]
    model:
      _name: lenet5
    criterion:
      _name: cross_entropy_loss
    optimizer:
      _name: adadelta_optimizer
    meters:
      top1:
        _name: topk_meter
        k: 1
    max_epoch: 10
    device: cpu
    hooks:
      on_end_epoch: 
        - 
          _name: print_state
          formats:
            - 'epoch: {epoch_idx}'
            - 'train_acc: {metrics[train_top1]:.1f}%'
            - 'test_acc: {metrics[test_top1]:.1f}%'   

    Check HERE for more comprehensive demos.

  3. Run your experiments through CLI:

    $ nest task run ./train_mnist.yml
  4. You can also use Nest's task runner in your code:

    >>> from nest import run_tasks
    >>> run_tasks('./train_mnist.yml')
  5. Based on the task runner feature, Nest modules can be flexibly replaced and assembled to create your desired experiment settings.

Contact

Yanzhao Zhou

Issues

Feel free to submit bug reports and feature requests.

Contribution

Pull requests are welcome.

License

MIT

Copyright © 2018-present, Yanzhao Zhou

Owner
ZhouYanzhao
ZhouYanzhao
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023