Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

Overview

MUGE Multimodal Retrieval Baseline

This repo is implemented based on the open_clip project, with modifications to adapt to the Chinese Multimodal Retrieval task

Requirements and Installation

This repo is successfully tested on the following environment:

  • python == 3.6.4
  • pytorch == 1.7.1
  • CUDA Version == 10.2

To install the requirements, run the following command:

pip install -r requirements.txt

For other CUDA versions (9.2, 10.1, 11.0), please refer to this guide on official Pytorch website and edit the requirements.txt to correctly install the compatible version of torch and torchvision.

Getting Started

Assume the downloaded dataset and downloaded pretrained weights are placed under this directory ${DATAPATH}. The following experiment is performed on a single server with 8 V100-16G GPUs.

Prepare CLIP and BERT Weights

In this repo, we build a CLIP model and employ pretrained Openai ViT-B-16 (download) and Chinese RoBERTa (ymcui's project, download) weights to initialize the image-side and text-side, respectively.

For ViT-B-16 weight, run the following command to transform the checkpoint format from a JIT-model to state_dict:

python src/preprocess/transform_openai_pretrain_weights.py \ 
    --raw-ckpt-path ${DATAPATH}/ViT-B-16.pt \
    --new-ckpt-path ${DATAPATH}/ViT-B-16.state_dict.pt

For RoBERTa weight, unzip the downloaded zipfile and place the pytorch_model.bin under the ${DATAPATH}.

Prepare the Transformed Images

The images need to be transformed to feed into the CLIP model. However, online transformation during training and inference is slow. Here we perform the image transformation before the experiment.

python src/preprocess/transform_images.py \ 
    --data_dir ${DATAPATH} \
    --image_resolution 224

The transformed image dataset costs around 100G disk space.

Training

export PYTHONPATH="$PYTHONPATH:$PWD/src"
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

python -u src/training/main.py \
    --save-frequency 1 \
    --train-data="${DATAPATH}/train_queries.jsonl"  \
    --train-img="${DATAPATH}/train_imgs.224.npz"  \
    --val-data="${DATAPATH}/valid_queries.jsonl"  \
    --val-img="${DATAPATH}/valid_imgs.224.npz"  \
    --clip-weight-path="${DATAPATH}/ViT-B-16.state_dict.pt" \
    --bert-weight-path="${DATAPATH}/pytorch_model.bin" \
    --warmup 500 \
    --batch-size=32 \
    --lr=8e-5 \
    --wd=0.001 \
    --epochs=10 \
    --model ViT-B-16

The training will cost a few hours. The log and checkpoint files will be saved under the logs directory.

Inference and Evaluation

Run the following command to compute image and query features using the trained CLIP model:

# only supports single-GPU inference
export CUDA_VISIBLE_DEVICES=0

python -u src/eval/extract_features.py \
    --extract-image-feats \
    --extract-text-feats \
    --image-data="${DATAPATH}/test_imgs.224.npz" \
    --text-data="${DATAPATH}/test_queries.jsonl" \
    --img-batch-size=32 \
    --text-batch-size=32 \
    --resume="logs/${experiment_name}/checkpoints/epoch_5.pt" \
    --model ViT-B-16

After obtaining the testing features, run the following command to perform kNN search to generate top-10 prediction jsonl file:

python -u src/eval/make_topk_predictions.py \
    --image-feats="${DATAPATH}/test_imgs.224.img_feat.jsonl" \
    --text-feats="${DATAPATH}/test_queries.txt_feat.jsonl" \
    --top-k=10 \
    --eval-batch-size=32768 \
    --output="${DATAPATH}/test_predictions.jsonl"

The jsonl file can be submitted to MUGE challenge site. In expection, the evaluated model will get a mean-recall of around 50. We strongly believe the baseline can be easily tuned and improved to achieve much better points :)

We also provide the evaluation script to evaluate model's mean-recall on validation set. Run the following command:

python src/eval/evaluation.py valid_predictions.jsonl valid_queries.jsonl output.json

The score will be saved in output.json. The script is the same as the MUGE evaluation server.

Reference

@inproceedings{M6,
  author    = {Junyang Lin and
               Rui Men and
               An Yang and
               Chang Zhou and
               Ming Ding and
               Yichang Zhang and
               Peng Wang and
               Ang Wang and
               Le Jiang and
               Xianyan Jia and
               Jie Zhang and
               Jianwei Zhang and
               Xu Zou and
               Zhikang Li and
               Xiaodong Deng and
               Jie Liu and
               Jinbao Xue and
               Huiling Zhou and
               Jianxin Ma and
               Jin Yu and
               Yong Li and
               Wei Lin and
               Jingren Zhou and
               Jie Tang and
               Hongxia Yang},
  title     = {{M6:} {A} Chinese Multimodal Pretrainer},
  year      = {2021},
  booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining},
  pages     = {3251–3261},
  numpages  = {11},
  location  = {Virtual Event, Singapore},
}

@article{M6-T,
  author    = {An Yang and
               Junyang Lin and
               Rui Men and
               Chang Zhou and
               Le Jiang and
               Xianyan Jia and
               Ang Wang and
               Jie Zhang and
               Jiamang Wang and
               Yong Li and
               Di Zhang and
               Wei Lin and
               Lin Qu and
               Jingren Zhou and
               Hongxia Yang},
  title     = {{M6-T:} Exploring Sparse Expert Models and Beyond},
  journal   = {CoRR},
  volume    = {abs/2105.15082},
  year      = {2021}
}

@software{ilharco_gabriel_2021_5143773,
  author       = {Ilharco, Gabriel and
                  Wortsman, Mitchell and
                  Carlini, Nicholas and
                  Taori, Rohan and
                  Dave, Achal and
                  Shankar, Vaishaal and
                  Namkoong, Hongseok and
                  Miller, John and
                  Hajishirzi, Hannaneh and
                  Farhadi, Ali and
                  Schmidt, Ludwig},
  title        = {OpenCLIP},
  month        = jul,
  year         = 2021,
  note         = {If you use this software, please cite it as below.},
  publisher    = {Zenodo},
  version      = {0.1},
  doi          = {10.5281/zenodo.5143773},
  url          = {https://doi.org/10.5281/zenodo.5143773}
}

@inproceedings{Radford2021LearningTV,
  title={Learning Transferable Visual Models From Natural Language Supervision},
  author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
  booktitle={ICML},
  year={2021}
}
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
571 Dec 25, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022