A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

Overview

Awesome-Human-Pose-Prediction

Version Awesome LastUpdated HitCount

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Maintainers: Karttikeya Mangalam

Contributing: Please feel free to pull requests to add new resources or suggest addditions or changes to the list. While proposing a new addition, please keep in mind the following principles:

  • The work has been accepted in a reputable peer reviewed publication venue.
  • An opensource link to the paper pdf is attached (as far as possible).
  • Code for the paper is linked (if made opensource by the authors).

Email: [email protected].{berkeley,stanford).edu

Datasets

  • Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments [Paper]
  • Stanford Drone Dataset (SDD): Learning Social Etiquette: Human Trajectory Understanding in Crowded Scenes [Paper] [Leaderboard]

Papers

As End in Itself

  • From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [Paper]

  • It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction [Paper]

  • Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data [Paper]

  • Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [paper]

  • Map-Adaptive Goal-Based Trajectory Prediction [paper]

  • Interaction-Aware Trajectory Prediction based on a 3D Spatio-Temporal Tensor Representation using Convolutional–Recurrent Neural Networks [paper]

  • DROGON: A Trajectory Prediction Model based on Intention-Conditioned Behavior Reasoning [Paper]

  • Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction [Paper]

  • Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians [Paper]

  • Leveraging Neural Network Gradients within Trajectory Optimization for Proactive Human-Robot Interactions [Paper]

  • Social NCE: Contrastive Learning of Socially-aware Motion Representations [Paper]

  • Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Autoencoder Approach [Paper]

  • Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interaction [Paper]

  • Deep Learning for Vision-based Prediction: A Survey [Paper]

  • Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-Pedestrian Attention Network [Paper]

  • Semantics for Robotic Mapping, Perception and Interaction: A Survey [Paper]

  • Benchmark for Evaluating Pedestrian Action Prediction[Paper]

  • Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking [Paper]

  • Pedestrian Behavior Prediction via Multitask Learning and Categorical Interaction Modeling [Paper]

  • Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for Pedestrian Action Prediction [Paper]

  • Haar Wavelet based Block Autoregressive Flows for Trajectories [Paper]

  • Imitative Planning using Conditional Normalizing Flow [Paper]

  • TNT: Target-driveN Trajectory Prediction [Paper]

  • SimAug: Learning Robust Representations from Simulation for Trajectory Prediction [Paper]

  • SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints [Paper]

  • Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks [Paper]

  • DESIRE: Distant Future Prediction in Dynamic Scenes With Interacting Agents [Paper]

  • Predicting Whole Body Motion Trajectories using Conditional Neural Movement Primitives [Paper] [W]

  • Anticipating Human Intention for Full-Body Motion Prediction [Paper] [W]

  • Human Motion Prediction With Graph Neural Networks [Paper] [W]

  • Action-Agnostic Human Pose Forecasting [Paper]

  • Human Torso Pose Forecasting in the Real World [Paper]

  • Imitation Learning for Human Pose Prediction [Paper]

  • Disentangling Human Dynamics for Pedestrian Locomotion Forecasting with Noisy Supervision [Paper]

  • Predicting 3D Human Dynamics from Video [Paper]

  • Recurrent Network Models for Human Dynamics [Paper]

  • Structural-RNN: Deep Learning on Spatio-Temporal Graphs [Paper]

  • Learning Trajectory Dependencies for Human Motion Prediction [Paper]

  • Anticipating many futures: Online human motion prediction and generation for human-robot interaction [Paper]

  • Teaching Robots to Predict Human Motion [Paper]

  • Deep representation learning for human motion prediction and classification [Paper]

  • On human motion prediction using recurrent neural networks [Paper]

  • Few-Shot Human Motion Prediction via Meta-learning [Paper]

  • Efficient convolutional hierarchical autoencoder for human motion prediction [Paper]

  • Learning Human Motion Models for Long-term Predictions [Paper]

  • Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic [Paper]

  • Context-aware Human Motion Prediction [Paper]

  • Adversarial Geometry-Aware Human Motion Prediction [Paper]

  • Convolutional Sequence to Sequence Model for Human Dynamics [Paper]

  • QuaterNet: A Quaternion-based Recurrent Model for Human Motion [Paper]

  • BiHMP-GAN: Bidirectional 3D Human Motion Prediction GAN [Paper]

  • Human Motion Modeling using DVGANs [Paper]

  • Human Motion Prediction using Semi-adaptable Neural Networks [Paper]

  • A Neural Temporal Model for Human Motion Prediction [Paper]

  • Modeling Human Motion with Quaternion-based Neural Networks [Paper]

  • Human Motion Prediction via Learning Local Structure Representations and Temporal Dependencies [Paper]

  • VRED: A Position-Velocity Recurrent Encoder-Decoder for Human Motion Prediction [Paper]

  • EAN: Error Attenuation Network for Long-term Human Motion Prediction [Paper]

  • Structured Prediction Helps 3D Human Motion Modelling [Paper]

  • Forecasting Human Dynamics from Static Images [Paper]

  • HP-GAN: Probabilistic 3D human motion prediction via GAN [Paper]

  • Learning Latent Representations of 3D Human Pose with Deep Neural Networks [Paper]

  • A Recurrent Variational Autoencoder for Human Motion Synthesis [Paper]

  • Spatio-temporal Manifold Learning for Human Motions via Long-horizon Modeling [Paper]

  • Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control [Paper]

  • PISEP2: Pseudo Image Sequence Evolution based 3D Pose Prediction [Paper]

  • Human Motion Prediction via Spatio-Temporal Inpainting [Paper]

  • Spatiotemporal Co-attention Recurrent Neural Networks for Human-Skeleton Motion Prediction [Paper]

  • Human Pose Forecasting via Deep Markov Models [Paper]

  • Auto-Conditioned Recurrent Networks For Extended Complex Human Motion Synthesis [Paper]

  • Predicting Long-Term Skeletal Motions by a Spatio-Temporal Hierarchical Recurrent Network [Paper]

As a Subtask

  • The Pose Knows: Video Forecasting by Generating Pose Futures [Paper]
  • I-Planner: Intention-Aware Motion Planning Using Learning Based Human Motion Prediction [Paper]
  • Language2Pose: Natural Language Grounded Pose Forecasting [Paper]
  • Long-Term Video Generation of Multiple Futures Using Human Poses [Paper]
  • Predicting body movements for person identification under different walking conditions [Paper]
Owner
Karttikeya Manglam
PhD Student in Computer Vision @ BAIR, UC Berkeley.
Karttikeya Manglam
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Xintao 1.4k Dec 25, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021