A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

Overview

Awesome-Human-Pose-Prediction

Version Awesome LastUpdated HitCount

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Maintainers: Karttikeya Mangalam

Contributing: Please feel free to pull requests to add new resources or suggest addditions or changes to the list. While proposing a new addition, please keep in mind the following principles:

  • The work has been accepted in a reputable peer reviewed publication venue.
  • An opensource link to the paper pdf is attached (as far as possible).
  • Code for the paper is linked (if made opensource by the authors).

Email: [email protected].{berkeley,stanford).edu

Datasets

  • Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments [Paper]
  • Stanford Drone Dataset (SDD): Learning Social Etiquette: Human Trajectory Understanding in Crowded Scenes [Paper] [Leaderboard]

Papers

As End in Itself

  • From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [Paper]

  • It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction [Paper]

  • Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data [Paper]

  • Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [paper]

  • Map-Adaptive Goal-Based Trajectory Prediction [paper]

  • Interaction-Aware Trajectory Prediction based on a 3D Spatio-Temporal Tensor Representation using Convolutional–Recurrent Neural Networks [paper]

  • DROGON: A Trajectory Prediction Model based on Intention-Conditioned Behavior Reasoning [Paper]

  • Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction [Paper]

  • Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians [Paper]

  • Leveraging Neural Network Gradients within Trajectory Optimization for Proactive Human-Robot Interactions [Paper]

  • Social NCE: Contrastive Learning of Socially-aware Motion Representations [Paper]

  • Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Autoencoder Approach [Paper]

  • Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interaction [Paper]

  • Deep Learning for Vision-based Prediction: A Survey [Paper]

  • Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-Pedestrian Attention Network [Paper]

  • Semantics for Robotic Mapping, Perception and Interaction: A Survey [Paper]

  • Benchmark for Evaluating Pedestrian Action Prediction[Paper]

  • Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking [Paper]

  • Pedestrian Behavior Prediction via Multitask Learning and Categorical Interaction Modeling [Paper]

  • Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for Pedestrian Action Prediction [Paper]

  • Haar Wavelet based Block Autoregressive Flows for Trajectories [Paper]

  • Imitative Planning using Conditional Normalizing Flow [Paper]

  • TNT: Target-driveN Trajectory Prediction [Paper]

  • SimAug: Learning Robust Representations from Simulation for Trajectory Prediction [Paper]

  • SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints [Paper]

  • Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks [Paper]

  • DESIRE: Distant Future Prediction in Dynamic Scenes With Interacting Agents [Paper]

  • Predicting Whole Body Motion Trajectories using Conditional Neural Movement Primitives [Paper] [W]

  • Anticipating Human Intention for Full-Body Motion Prediction [Paper] [W]

  • Human Motion Prediction With Graph Neural Networks [Paper] [W]

  • Action-Agnostic Human Pose Forecasting [Paper]

  • Human Torso Pose Forecasting in the Real World [Paper]

  • Imitation Learning for Human Pose Prediction [Paper]

  • Disentangling Human Dynamics for Pedestrian Locomotion Forecasting with Noisy Supervision [Paper]

  • Predicting 3D Human Dynamics from Video [Paper]

  • Recurrent Network Models for Human Dynamics [Paper]

  • Structural-RNN: Deep Learning on Spatio-Temporal Graphs [Paper]

  • Learning Trajectory Dependencies for Human Motion Prediction [Paper]

  • Anticipating many futures: Online human motion prediction and generation for human-robot interaction [Paper]

  • Teaching Robots to Predict Human Motion [Paper]

  • Deep representation learning for human motion prediction and classification [Paper]

  • On human motion prediction using recurrent neural networks [Paper]

  • Few-Shot Human Motion Prediction via Meta-learning [Paper]

  • Efficient convolutional hierarchical autoencoder for human motion prediction [Paper]

  • Learning Human Motion Models for Long-term Predictions [Paper]

  • Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic [Paper]

  • Context-aware Human Motion Prediction [Paper]

  • Adversarial Geometry-Aware Human Motion Prediction [Paper]

  • Convolutional Sequence to Sequence Model for Human Dynamics [Paper]

  • QuaterNet: A Quaternion-based Recurrent Model for Human Motion [Paper]

  • BiHMP-GAN: Bidirectional 3D Human Motion Prediction GAN [Paper]

  • Human Motion Modeling using DVGANs [Paper]

  • Human Motion Prediction using Semi-adaptable Neural Networks [Paper]

  • A Neural Temporal Model for Human Motion Prediction [Paper]

  • Modeling Human Motion with Quaternion-based Neural Networks [Paper]

  • Human Motion Prediction via Learning Local Structure Representations and Temporal Dependencies [Paper]

  • VRED: A Position-Velocity Recurrent Encoder-Decoder for Human Motion Prediction [Paper]

  • EAN: Error Attenuation Network for Long-term Human Motion Prediction [Paper]

  • Structured Prediction Helps 3D Human Motion Modelling [Paper]

  • Forecasting Human Dynamics from Static Images [Paper]

  • HP-GAN: Probabilistic 3D human motion prediction via GAN [Paper]

  • Learning Latent Representations of 3D Human Pose with Deep Neural Networks [Paper]

  • A Recurrent Variational Autoencoder for Human Motion Synthesis [Paper]

  • Spatio-temporal Manifold Learning for Human Motions via Long-horizon Modeling [Paper]

  • Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control [Paper]

  • PISEP2: Pseudo Image Sequence Evolution based 3D Pose Prediction [Paper]

  • Human Motion Prediction via Spatio-Temporal Inpainting [Paper]

  • Spatiotemporal Co-attention Recurrent Neural Networks for Human-Skeleton Motion Prediction [Paper]

  • Human Pose Forecasting via Deep Markov Models [Paper]

  • Auto-Conditioned Recurrent Networks For Extended Complex Human Motion Synthesis [Paper]

  • Predicting Long-Term Skeletal Motions by a Spatio-Temporal Hierarchical Recurrent Network [Paper]

As a Subtask

  • The Pose Knows: Video Forecasting by Generating Pose Futures [Paper]
  • I-Planner: Intention-Aware Motion Planning Using Learning Based Human Motion Prediction [Paper]
  • Language2Pose: Natural Language Grounded Pose Forecasting [Paper]
  • Long-Term Video Generation of Multiple Futures Using Human Poses [Paper]
  • Predicting body movements for person identification under different walking conditions [Paper]
Owner
Karttikeya Manglam
PhD Student in Computer Vision @ BAIR, UC Berkeley.
Karttikeya Manglam
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022