A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

Overview

Awesome-Human-Pose-Prediction

Version Awesome LastUpdated HitCount

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Maintainers: Karttikeya Mangalam

Contributing: Please feel free to pull requests to add new resources or suggest addditions or changes to the list. While proposing a new addition, please keep in mind the following principles:

  • The work has been accepted in a reputable peer reviewed publication venue.
  • An opensource link to the paper pdf is attached (as far as possible).
  • Code for the paper is linked (if made opensource by the authors).

Email: [email protected].{berkeley,stanford).edu

Datasets

  • Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments [Paper]
  • Stanford Drone Dataset (SDD): Learning Social Etiquette: Human Trajectory Understanding in Crowded Scenes [Paper] [Leaderboard]

Papers

As End in Itself

  • From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [Paper]

  • It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction [Paper]

  • Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data [Paper]

  • Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [paper]

  • Map-Adaptive Goal-Based Trajectory Prediction [paper]

  • Interaction-Aware Trajectory Prediction based on a 3D Spatio-Temporal Tensor Representation using Convolutional–Recurrent Neural Networks [paper]

  • DROGON: A Trajectory Prediction Model based on Intention-Conditioned Behavior Reasoning [Paper]

  • Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction [Paper]

  • Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians [Paper]

  • Leveraging Neural Network Gradients within Trajectory Optimization for Proactive Human-Robot Interactions [Paper]

  • Social NCE: Contrastive Learning of Socially-aware Motion Representations [Paper]

  • Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Autoencoder Approach [Paper]

  • Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interaction [Paper]

  • Deep Learning for Vision-based Prediction: A Survey [Paper]

  • Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-Pedestrian Attention Network [Paper]

  • Semantics for Robotic Mapping, Perception and Interaction: A Survey [Paper]

  • Benchmark for Evaluating Pedestrian Action Prediction[Paper]

  • Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking [Paper]

  • Pedestrian Behavior Prediction via Multitask Learning and Categorical Interaction Modeling [Paper]

  • Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for Pedestrian Action Prediction [Paper]

  • Haar Wavelet based Block Autoregressive Flows for Trajectories [Paper]

  • Imitative Planning using Conditional Normalizing Flow [Paper]

  • TNT: Target-driveN Trajectory Prediction [Paper]

  • SimAug: Learning Robust Representations from Simulation for Trajectory Prediction [Paper]

  • SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints [Paper]

  • Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks [Paper]

  • DESIRE: Distant Future Prediction in Dynamic Scenes With Interacting Agents [Paper]

  • Predicting Whole Body Motion Trajectories using Conditional Neural Movement Primitives [Paper] [W]

  • Anticipating Human Intention for Full-Body Motion Prediction [Paper] [W]

  • Human Motion Prediction With Graph Neural Networks [Paper] [W]

  • Action-Agnostic Human Pose Forecasting [Paper]

  • Human Torso Pose Forecasting in the Real World [Paper]

  • Imitation Learning for Human Pose Prediction [Paper]

  • Disentangling Human Dynamics for Pedestrian Locomotion Forecasting with Noisy Supervision [Paper]

  • Predicting 3D Human Dynamics from Video [Paper]

  • Recurrent Network Models for Human Dynamics [Paper]

  • Structural-RNN: Deep Learning on Spatio-Temporal Graphs [Paper]

  • Learning Trajectory Dependencies for Human Motion Prediction [Paper]

  • Anticipating many futures: Online human motion prediction and generation for human-robot interaction [Paper]

  • Teaching Robots to Predict Human Motion [Paper]

  • Deep representation learning for human motion prediction and classification [Paper]

  • On human motion prediction using recurrent neural networks [Paper]

  • Few-Shot Human Motion Prediction via Meta-learning [Paper]

  • Efficient convolutional hierarchical autoencoder for human motion prediction [Paper]

  • Learning Human Motion Models for Long-term Predictions [Paper]

  • Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic [Paper]

  • Context-aware Human Motion Prediction [Paper]

  • Adversarial Geometry-Aware Human Motion Prediction [Paper]

  • Convolutional Sequence to Sequence Model for Human Dynamics [Paper]

  • QuaterNet: A Quaternion-based Recurrent Model for Human Motion [Paper]

  • BiHMP-GAN: Bidirectional 3D Human Motion Prediction GAN [Paper]

  • Human Motion Modeling using DVGANs [Paper]

  • Human Motion Prediction using Semi-adaptable Neural Networks [Paper]

  • A Neural Temporal Model for Human Motion Prediction [Paper]

  • Modeling Human Motion with Quaternion-based Neural Networks [Paper]

  • Human Motion Prediction via Learning Local Structure Representations and Temporal Dependencies [Paper]

  • VRED: A Position-Velocity Recurrent Encoder-Decoder for Human Motion Prediction [Paper]

  • EAN: Error Attenuation Network for Long-term Human Motion Prediction [Paper]

  • Structured Prediction Helps 3D Human Motion Modelling [Paper]

  • Forecasting Human Dynamics from Static Images [Paper]

  • HP-GAN: Probabilistic 3D human motion prediction via GAN [Paper]

  • Learning Latent Representations of 3D Human Pose with Deep Neural Networks [Paper]

  • A Recurrent Variational Autoencoder for Human Motion Synthesis [Paper]

  • Spatio-temporal Manifold Learning for Human Motions via Long-horizon Modeling [Paper]

  • Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control [Paper]

  • PISEP2: Pseudo Image Sequence Evolution based 3D Pose Prediction [Paper]

  • Human Motion Prediction via Spatio-Temporal Inpainting [Paper]

  • Spatiotemporal Co-attention Recurrent Neural Networks for Human-Skeleton Motion Prediction [Paper]

  • Human Pose Forecasting via Deep Markov Models [Paper]

  • Auto-Conditioned Recurrent Networks For Extended Complex Human Motion Synthesis [Paper]

  • Predicting Long-Term Skeletal Motions by a Spatio-Temporal Hierarchical Recurrent Network [Paper]

As a Subtask

  • The Pose Knows: Video Forecasting by Generating Pose Futures [Paper]
  • I-Planner: Intention-Aware Motion Planning Using Learning Based Human Motion Prediction [Paper]
  • Language2Pose: Natural Language Grounded Pose Forecasting [Paper]
  • Long-Term Video Generation of Multiple Futures Using Human Poses [Paper]
  • Predicting body movements for person identification under different walking conditions [Paper]
Owner
Karttikeya Manglam
PhD Student in Computer Vision @ BAIR, UC Berkeley.
Karttikeya Manglam
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022