Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Related tags

Deep LearningWAKD
Overview

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Introduction

WAKD is a PyTorch implementation for our ICPR-2022 paper "Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation".

Installation

We test this repo with Python 3.8, PyTorch 1.9.0, and CUDA 10.2. But it should be runnable with recent PyTorch versions (Pytorch >=1.0.0).

python setup.py develop

Preparation

Datasets

We test our models on three geo-localization benchmarks, Pittsburgh, Tokyo 24/7 and Tokyo Time Machine datasets. The three datasets can be downloaded at here.

The directory of datasets used is like

datasets/data
├── pitts
│   ├── raw
│   │   ├── pitts250k_test.mat
│   │   ├── pitts250k_train.mat
│   │   ├── pitts250k_val.mat
│   │   ├── pitts30k_test.mat
│   │   ├── pitts30k_train.mat
│   │   ├── pitts30k_val.mat
│   └── └── Pittsburgh
│           ├──images/
│           └──queries/
└── tokyo
    ├── raw
    │   ├── tokyo247
    │   │   ├──images/
    │   │   └──query/
    │   ├── tokyo247.mat
    │   ├── tokyoTM/images/
    │   ├── tokyoTM_train.mat
    └── └── tokyoTM_val.mat

Pre-trained Weights

The file tree we used for storing the pre-trained weights is like

logs
├── vgg16_pretrained.pth.tar # refer to (1)
├── mbv3_large.pth.tar
└── vgg16_pitts_64_desc_cen.hdf5 # refer to (2)
└── mobilenetv3_large_pitts_64_desc_cen.hdf5

(1) ImageNet-pretrained weights for CNNs backbone

The ImageNet-pretrained weights for CNNs backbone or the pretrained weights for the whole model.

(2) initial cluster centers for VLAD layer

Note that the VLAD layer cannot work with random initialization. The original cluster centers provided by NetVLAD or self-computed cluster centers by running the scripts/cluster.sh.

./scripts/cluster.sh mobilenetv3_large

Training

Train by running script in the terminal. Script location: scripts/train_wakd_st.sh

Format:

bash scripts/train_wakd_st.sh arch archT

where, arch is the backbone name, such as mobilenetv3_large. archT is the teacher backbone name, such as vgg16.

For example:

bash scripts/train_wakd_st.sh mobilenetv3_large vgg16

In the train_wakd_st.sh. In case you want to fasten testing, enlarge GPUS for more GPUs, or enlarge the --tuple-size for more tuples on one GPU. In case your GPU does not have enough memory, reduce --pos-num or --neg-num for fewer positives or negatives in one tuple.

Testing

Test by running script in the terminal. Script location: scripts/test.sh

Format:

bash scripts/test.sh resume arch dataset scale

where, resume is the trained model path. arch is the backbone name, such as vgg16, mobilenetv3_large and resnet152. dataset scale, such as pitts 30k and pitts 250k.

For example:

  1. Test mobilenetv3_large on pitts 250k:
bash scripts/test.sh logs/netVLAD/pitts30k-mobilenetv3_large/model_best.pth.tar mobilenetv3_large pitts 250k
  1. Test vgg16 on tokyo:
bash scripts/test.sh logs/netVLAD/pitts30k-vgg16/model_best.pth.tar model_best.pth.tar vgg16 tokyo

In the test.sh. In case you want to fasten testing, enlarge GPUS for more GPUs, or enlarge the --test-batch-size for larger batch size on one GPU. In case your GPU does not have enough memory, reduce --test-batch-size for smaller batch size on one GPU.

Acknowledgements

We truely thanksful of the following two piror works. Particularly, part of the code is inspired by [pytorch-NetVlad]

  • NetVLAD: CNN architecture for weakly supervised place recognition (CVPR'16) [paper] [pytorch-NetVlad]
  • SARE: Stochastic Attraction-Repulsion Embedding for Large Scale Image Localization (ICCV'19) [paper] [deepIBL]
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023