A library for finding knowledge neurons in pretrained transformer models.

Overview

knowledge-neurons

An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the technique to autoregressive models, as well as MLMs.

The Huggingface Transformers library is used as the backend, so any model you want to probe must be implemented there.

Currently integrated models:

BERT_MODELS = ["bert-base-uncased", "bert-base-multilingual-uncased"]
GPT2_MODELS = ["gpt2"]
GPT_NEO_MODELS = [
    "EleutherAI/gpt-neo-125M",
    "EleutherAI/gpt-neo-1.3B",
    "EleutherAI/gpt-neo-2.7B",
]

The technique from Dai et al. has been used to locate knowledge neurons in the huggingface bert-base-uncased model for all the head/relation/tail entities in the PARAREL dataset. Both the neurons, and more detailed results of the experiment are published at bert_base_uncased_neurons/*.json and can be replicated by running pararel_evaluate.py. More details in the Evaluations on the PARAREL dataset section.

Setup

Either clone the github, and run scripts from there:

git clone knowledge-neurons
cd knowledge-neurons

Or install as a pip package:

pip install knowledge-neurons

Usage & Examples

An example using bert-base-uncased:

from knowledge_neurons import KnowledgeNeurons, initialize_model_and_tokenizer, model_type
import random

# first initialize some hyperparameters
MODEL_NAME = "bert-base-uncased"

# to find the knowledge neurons, we need the same 'facts' expressed in multiple different ways, and a ground truth
TEXTS = [
    "Sarah was visiting [MASK], the capital of france",
    "The capital of france is [MASK]",
    "[MASK] is the capital of france",
    "France's capital [MASK] is a hotspot for romantic vacations",
    "The eiffel tower is situated in [MASK]",
    "[MASK] is the most populous city in france",
    "[MASK], france's capital, is one of the most popular tourist destinations in the world",
]
TEXT = TEXTS[0]
GROUND_TRUTH = "paris"

# these are some hyperparameters for the integrated gradients step
BATCH_SIZE = 20
STEPS = 20 # number of steps in the integrated grad calculation
ADAPTIVE_THRESHOLD = 0.3 # in the paper, they find the threshold value `t` by multiplying the max attribution score by some float - this is that float.
P = 0.5 # the threshold for the sharing percentage

# setup model & tokenizer
model, tokenizer = initialize_model_and_tokenizer(MODEL_NAME)

# initialize the knowledge neuron wrapper with your model, tokenizer and a string expressing the type of your model ('gpt2' / 'gpt_neo' / 'bert')
kn = KnowledgeNeurons(model, tokenizer, model_type=model_type(MODEL_NAME))

# use the integrated gradients technique to find some refined neurons for your set of prompts
refined_neurons = kn.get_refined_neurons(
    TEXTS,
    GROUND_TRUTH,
    p=P,
    batch_size=BATCH_SIZE,
    steps=STEPS,
    coarse_adaptive_threshold=ADAPTIVE_THRESHOLD,
)

# suppress the activations at the refined neurons + test the effect on a relevant prompt
# 'results_dict' is a dictionary containing the probability of the ground truth being generated before + after modification, as well as other info
# 'unpatch_fn' is a function you can use to undo the activation suppression in the model. 
# By default, the suppression is removed at the end of any function that applies a patch, but you can set 'undo_modification=False', 
# run your own experiments with the activations / weights still modified, then run 'unpatch_fn' to undo the modifications
results_dict, unpatch_fn = kn.suppress_knowledge(
    TEXT, GROUND_TRUTH, refined_neurons
)

# suppress the activations at the refined neurons + test the effect on an unrelated prompt
results_dict, unpatch_fn = kn.suppress_knowledge(
    "[MASK] is the official language of the solomon islands",
    "english",
    refined_neurons,
)

# enhance the activations at the refined neurons + test the effect on a relevant prompt
results_dict, unpatch_fn = kn.enhance_knowledge(TEXT, GROUND_TRUTH, refined_neurons)

# erase the weights of the output ff layer at the refined neurons (replacing them with zeros) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="zero"
)

# erase the weights of the output ff layer at the refined neurons (replacing them with an unk token) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="unk"
)

# edit the weights of the output ff layer at the refined neurons (replacing them with the word embedding of 'target') + test the effect
# we can make the model think the capital of france is London!
results_dict, unpatch_fn = kn.edit_knowledge(
    TEXT, target="london", neurons=refined_neurons
)

for bert models, the position where the "[MASK]" token is located is used to evaluate the knowledge neurons, (and the ground truth should be what the mask token is expected to be), but due to the nature of GPT models, the last position in the prompt is used by default, and the ground truth is expected to immediately follow.

In GPT models, due to the subword tokenization, the integrated gradients are taken n times, where n is the length of the expected ground truth in tokens, and the mean of the integrated gradients at each step is taken.

for bert models, the ground truth is currently expected to be a single token. Multi-token ground truths are on the todo list.

Evaluations on the PARAREL dataset

To ensure that the repo works correctly, figures 3 and 4 from the knowledge neurons paper are reproduced below. In general the results appear similar, except suppressing unrelated facts appears to have a little more of an affect in this repo than in the paper's original results.*

Below are Dai et al's, and our result, respectively, for suppressing the activations of the refined knowledge neurons in pararel: knowledge neuron suppression / dai et al. knowledge neuron suppression / ours

And Dai et al's, and our result, respectively, for enhancing the activations of the knowledge neurons: knowledge neuron enhancement / dai et al. knowledge neuron enhancement / ours

To find the knowledge neurons in bert-base-uncased for the PARAREL dataset, and replicate figures 3. and 4. from the paper, you can run

# find knowledge neurons + test suppression / enhancement (this will take a day or so on a decent gpu) 
# you can skip this step since the results are provided in `bert_base_uncased_neurons`
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE pararel_evaluate.py
# plot results 
python plot_pararel_results.py

*It's unclear where the difference comes from, but my suspicion is they made sure to only select facts with different relations, whereas in the plots below, only a different pararel UUID was selected. In retrospect, this could actually express the same fact, so I'll rerun these experiments soon.

TODO:

  • Better documentation
  • Publish PARAREL results for bert-base-multilingual-uncased
  • Publish PARAREL results for bert-large-uncased
  • Publish PARAREL results for bert-large-multilingual-uncased
  • Multiple masked tokens for bert models
  • Find good dataset for GPT-like models to evaluate knowledge neurons (PARAREL isn't applicable since the tail entities aren't always at the end of the sentence)
  • Add negative examples for getting refined neurons (i.e expressing a different fact in the same way)
  • Look into different attribution methods (cf. https://arxiv.org/pdf/2010.02695.pdf)

Citations

@article{Dai2021KnowledgeNI,
  title={Knowledge Neurons in Pretrained Transformers},
  author={Damai Dai and Li Dong and Y. Hao and Zhifang Sui and Furu Wei},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.08696}
}
Owner
EleutherAI
EleutherAI
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022