A library for finding knowledge neurons in pretrained transformer models.

Overview

knowledge-neurons

An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the technique to autoregressive models, as well as MLMs.

The Huggingface Transformers library is used as the backend, so any model you want to probe must be implemented there.

Currently integrated models:

BERT_MODELS = ["bert-base-uncased", "bert-base-multilingual-uncased"]
GPT2_MODELS = ["gpt2"]
GPT_NEO_MODELS = [
    "EleutherAI/gpt-neo-125M",
    "EleutherAI/gpt-neo-1.3B",
    "EleutherAI/gpt-neo-2.7B",
]

The technique from Dai et al. has been used to locate knowledge neurons in the huggingface bert-base-uncased model for all the head/relation/tail entities in the PARAREL dataset. Both the neurons, and more detailed results of the experiment are published at bert_base_uncased_neurons/*.json and can be replicated by running pararel_evaluate.py. More details in the Evaluations on the PARAREL dataset section.

Setup

Either clone the github, and run scripts from there:

git clone knowledge-neurons
cd knowledge-neurons

Or install as a pip package:

pip install knowledge-neurons

Usage & Examples

An example using bert-base-uncased:

from knowledge_neurons import KnowledgeNeurons, initialize_model_and_tokenizer, model_type
import random

# first initialize some hyperparameters
MODEL_NAME = "bert-base-uncased"

# to find the knowledge neurons, we need the same 'facts' expressed in multiple different ways, and a ground truth
TEXTS = [
    "Sarah was visiting [MASK], the capital of france",
    "The capital of france is [MASK]",
    "[MASK] is the capital of france",
    "France's capital [MASK] is a hotspot for romantic vacations",
    "The eiffel tower is situated in [MASK]",
    "[MASK] is the most populous city in france",
    "[MASK], france's capital, is one of the most popular tourist destinations in the world",
]
TEXT = TEXTS[0]
GROUND_TRUTH = "paris"

# these are some hyperparameters for the integrated gradients step
BATCH_SIZE = 20
STEPS = 20 # number of steps in the integrated grad calculation
ADAPTIVE_THRESHOLD = 0.3 # in the paper, they find the threshold value `t` by multiplying the max attribution score by some float - this is that float.
P = 0.5 # the threshold for the sharing percentage

# setup model & tokenizer
model, tokenizer = initialize_model_and_tokenizer(MODEL_NAME)

# initialize the knowledge neuron wrapper with your model, tokenizer and a string expressing the type of your model ('gpt2' / 'gpt_neo' / 'bert')
kn = KnowledgeNeurons(model, tokenizer, model_type=model_type(MODEL_NAME))

# use the integrated gradients technique to find some refined neurons for your set of prompts
refined_neurons = kn.get_refined_neurons(
    TEXTS,
    GROUND_TRUTH,
    p=P,
    batch_size=BATCH_SIZE,
    steps=STEPS,
    coarse_adaptive_threshold=ADAPTIVE_THRESHOLD,
)

# suppress the activations at the refined neurons + test the effect on a relevant prompt
# 'results_dict' is a dictionary containing the probability of the ground truth being generated before + after modification, as well as other info
# 'unpatch_fn' is a function you can use to undo the activation suppression in the model. 
# By default, the suppression is removed at the end of any function that applies a patch, but you can set 'undo_modification=False', 
# run your own experiments with the activations / weights still modified, then run 'unpatch_fn' to undo the modifications
results_dict, unpatch_fn = kn.suppress_knowledge(
    TEXT, GROUND_TRUTH, refined_neurons
)

# suppress the activations at the refined neurons + test the effect on an unrelated prompt
results_dict, unpatch_fn = kn.suppress_knowledge(
    "[MASK] is the official language of the solomon islands",
    "english",
    refined_neurons,
)

# enhance the activations at the refined neurons + test the effect on a relevant prompt
results_dict, unpatch_fn = kn.enhance_knowledge(TEXT, GROUND_TRUTH, refined_neurons)

# erase the weights of the output ff layer at the refined neurons (replacing them with zeros) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="zero"
)

# erase the weights of the output ff layer at the refined neurons (replacing them with an unk token) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="unk"
)

# edit the weights of the output ff layer at the refined neurons (replacing them with the word embedding of 'target') + test the effect
# we can make the model think the capital of france is London!
results_dict, unpatch_fn = kn.edit_knowledge(
    TEXT, target="london", neurons=refined_neurons
)

for bert models, the position where the "[MASK]" token is located is used to evaluate the knowledge neurons, (and the ground truth should be what the mask token is expected to be), but due to the nature of GPT models, the last position in the prompt is used by default, and the ground truth is expected to immediately follow.

In GPT models, due to the subword tokenization, the integrated gradients are taken n times, where n is the length of the expected ground truth in tokens, and the mean of the integrated gradients at each step is taken.

for bert models, the ground truth is currently expected to be a single token. Multi-token ground truths are on the todo list.

Evaluations on the PARAREL dataset

To ensure that the repo works correctly, figures 3 and 4 from the knowledge neurons paper are reproduced below. In general the results appear similar, except suppressing unrelated facts appears to have a little more of an affect in this repo than in the paper's original results.*

Below are Dai et al's, and our result, respectively, for suppressing the activations of the refined knowledge neurons in pararel: knowledge neuron suppression / dai et al. knowledge neuron suppression / ours

And Dai et al's, and our result, respectively, for enhancing the activations of the knowledge neurons: knowledge neuron enhancement / dai et al. knowledge neuron enhancement / ours

To find the knowledge neurons in bert-base-uncased for the PARAREL dataset, and replicate figures 3. and 4. from the paper, you can run

# find knowledge neurons + test suppression / enhancement (this will take a day or so on a decent gpu) 
# you can skip this step since the results are provided in `bert_base_uncased_neurons`
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE pararel_evaluate.py
# plot results 
python plot_pararel_results.py

*It's unclear where the difference comes from, but my suspicion is they made sure to only select facts with different relations, whereas in the plots below, only a different pararel UUID was selected. In retrospect, this could actually express the same fact, so I'll rerun these experiments soon.

TODO:

  • Better documentation
  • Publish PARAREL results for bert-base-multilingual-uncased
  • Publish PARAREL results for bert-large-uncased
  • Publish PARAREL results for bert-large-multilingual-uncased
  • Multiple masked tokens for bert models
  • Find good dataset for GPT-like models to evaluate knowledge neurons (PARAREL isn't applicable since the tail entities aren't always at the end of the sentence)
  • Add negative examples for getting refined neurons (i.e expressing a different fact in the same way)
  • Look into different attribution methods (cf. https://arxiv.org/pdf/2010.02695.pdf)

Citations

@article{Dai2021KnowledgeNI,
  title={Knowledge Neurons in Pretrained Transformers},
  author={Damai Dai and Li Dong and Y. Hao and Zhifang Sui and Furu Wei},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.08696}
}
Owner
EleutherAI
EleutherAI
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022