Machine learning notebooks in different subjects optimized to run in google collaboratory

Overview

Notebooks

Name Description Category Link
Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the code is based on this implementation. GAN
One Place This notebook shows how to train, test then deploy models in the browser directly from one notebook. We use a simple XOR example to prove this simple concept. Deployment
TPU vs GPU Google recently allowed training on TPUs for free on colab. This notebook explains how to enable TPU training. Also, it reports some benchmarks using mnist dataset by comparing TPU and GPU performance. TPU
Keras Custom Data Generator This notebook shows to create a custom data genertor in keras. Data Generatation
Eager Execution (1) As we know that TenosrFlow works with static graphs. So, first you have to create the graph then execute it later. This makes debugging a bit complicated. With Eager Execution you can now evalute operations directly without creating a session. Dynamic Graphs
Eager Execution (2) In this notebook I explain different concepts in eager execution. I go over variables, ops, gradients, custom gradients, callbacks, metrics and creating models with tf.keras and saving/restoring them. Dynamic Graphs
Sketcher Create a simple app to recognize 100 drawings from the quickdraw dataset. A simple CNN model is created and served to deoploy in the browser to create a sketch recognizer app. Deployment
QuickDraw10 In this notebook we provide QuickDraw10 as an alternative for MNIST. A script is provided to download and load a preprocessed dataset for 10 classes with training and testing split. Also, a simple CNN model is implemented for training and testing. Data Preperation
Autoencoders Autoencoders consists of two structures: the encoder and the decoder. The encoder network downsamples the data into lower dimensions and the decoder network reconstructs the original data from the lower dimension representation. The lower dimension representation is usually called latent space representation. Auto-encoder
Weight Transfer In this tutorial we explain how to transfer weights from a static graph model built with TensorFlow to a dynamic graph built with Keras. We will first train a model using Tensorflow then we will create the same model in keras and transfer the trained weights between the two models. Weights Save and Load
BigGan (1) Create some cool gifs by interpolation in the latent space of the BigGan model. The model is imported from tensorflow hub. GAN
BigGan (2) In this notebook I give a basic introduction to bigGans. I also, how to interpolate between z-vector values. Moreover, I show the results of multiple experiments I made in the latent space of BigGans. GAN
Mask R-CNN In this notebook a pretrained Mask R-CNN model is used to predict the bounding box and the segmentation mask of objects. I used this notebook to create the dataset for training the pix2pix model. Segmentation
QuickDraw Strokes A notebook exploring the drawing data of quickdraw. I also illustrate how to make a cool animation of the drawing process in colab. Data Preperation
U-Net The U-Net model is a simple fully convolutional neural network that is used for binary segmentation i.e foreground and background pixel-wise classification. In this notebook we use it to segment cats and dogs from arbitrary images. Segmentation
Localizer A simple CNN with a regression branch to predict bounding box parameters. The model is trained on a dataset of dogs and cats with bounding box annotations around the head of the pets. Object Localization
Classification and Localization We create a simple CNN with two branches for classification and locazliation of cats and dogs. Classification, Localization
Transfer Learning A notebook about using Mobilenet for transfer learning in TensorFlow. The model is very fast and achieves 97% validation accuracy on a binary classification dataset. Transfer Learning
Hand Detection In this task we want to localize the right and left hands for each person that exists in a single frame. It acheives around 0.85 IoU. Detection
Face Detection In this task we used a simple version of SSD for face detection. The model was trained on less than 3K images using TensorFlow with eager execution Detection
TensorFlow 2.0 In this task we use the brand new TF 2.0 with default eager execution. We explore, tensors, gradients, dataset and many more. Platform
SC-FEGAN In this notebook, you can play directly with the SC-FEGAN for face-editting directly in the browser. GAN
Swift for TensorFlow Swift for TensorFlow is a next-generation platform for machine learning that incorporates differentiable programming. In this notebook a go over its basics and also how to create a simple NN and CNN. Platform
GCN Ever asked yourself how to use convolution networks for non Euclidean data for instance graphs ? GCNs are becoming increasingly popular to solve such problems. I used Deep GCNs to classify spammers & non-spammers. Platform
Owner
Zaid Alyafeai
PhD student
Zaid Alyafeai
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022