Machine learning notebooks in different subjects optimized to run in google collaboratory

Overview

Notebooks

Name Description Category Link
Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the code is based on this implementation. GAN
One Place This notebook shows how to train, test then deploy models in the browser directly from one notebook. We use a simple XOR example to prove this simple concept. Deployment
TPU vs GPU Google recently allowed training on TPUs for free on colab. This notebook explains how to enable TPU training. Also, it reports some benchmarks using mnist dataset by comparing TPU and GPU performance. TPU
Keras Custom Data Generator This notebook shows to create a custom data genertor in keras. Data Generatation
Eager Execution (1) As we know that TenosrFlow works with static graphs. So, first you have to create the graph then execute it later. This makes debugging a bit complicated. With Eager Execution you can now evalute operations directly without creating a session. Dynamic Graphs
Eager Execution (2) In this notebook I explain different concepts in eager execution. I go over variables, ops, gradients, custom gradients, callbacks, metrics and creating models with tf.keras and saving/restoring them. Dynamic Graphs
Sketcher Create a simple app to recognize 100 drawings from the quickdraw dataset. A simple CNN model is created and served to deoploy in the browser to create a sketch recognizer app. Deployment
QuickDraw10 In this notebook we provide QuickDraw10 as an alternative for MNIST. A script is provided to download and load a preprocessed dataset for 10 classes with training and testing split. Also, a simple CNN model is implemented for training and testing. Data Preperation
Autoencoders Autoencoders consists of two structures: the encoder and the decoder. The encoder network downsamples the data into lower dimensions and the decoder network reconstructs the original data from the lower dimension representation. The lower dimension representation is usually called latent space representation. Auto-encoder
Weight Transfer In this tutorial we explain how to transfer weights from a static graph model built with TensorFlow to a dynamic graph built with Keras. We will first train a model using Tensorflow then we will create the same model in keras and transfer the trained weights between the two models. Weights Save and Load
BigGan (1) Create some cool gifs by interpolation in the latent space of the BigGan model. The model is imported from tensorflow hub. GAN
BigGan (2) In this notebook I give a basic introduction to bigGans. I also, how to interpolate between z-vector values. Moreover, I show the results of multiple experiments I made in the latent space of BigGans. GAN
Mask R-CNN In this notebook a pretrained Mask R-CNN model is used to predict the bounding box and the segmentation mask of objects. I used this notebook to create the dataset for training the pix2pix model. Segmentation
QuickDraw Strokes A notebook exploring the drawing data of quickdraw. I also illustrate how to make a cool animation of the drawing process in colab. Data Preperation
U-Net The U-Net model is a simple fully convolutional neural network that is used for binary segmentation i.e foreground and background pixel-wise classification. In this notebook we use it to segment cats and dogs from arbitrary images. Segmentation
Localizer A simple CNN with a regression branch to predict bounding box parameters. The model is trained on a dataset of dogs and cats with bounding box annotations around the head of the pets. Object Localization
Classification and Localization We create a simple CNN with two branches for classification and locazliation of cats and dogs. Classification, Localization
Transfer Learning A notebook about using Mobilenet for transfer learning in TensorFlow. The model is very fast and achieves 97% validation accuracy on a binary classification dataset. Transfer Learning
Hand Detection In this task we want to localize the right and left hands for each person that exists in a single frame. It acheives around 0.85 IoU. Detection
Face Detection In this task we used a simple version of SSD for face detection. The model was trained on less than 3K images using TensorFlow with eager execution Detection
TensorFlow 2.0 In this task we use the brand new TF 2.0 with default eager execution. We explore, tensors, gradients, dataset and many more. Platform
SC-FEGAN In this notebook, you can play directly with the SC-FEGAN for face-editting directly in the browser. GAN
Swift for TensorFlow Swift for TensorFlow is a next-generation platform for machine learning that incorporates differentiable programming. In this notebook a go over its basics and also how to create a simple NN and CNN. Platform
GCN Ever asked yourself how to use convolution networks for non Euclidean data for instance graphs ? GCNs are becoming increasingly popular to solve such problems. I used Deep GCNs to classify spammers & non-spammers. Platform
Owner
Zaid Alyafeai
PhD student
Zaid Alyafeai
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023