Joint Detection and Identification Feature Learning for Person Search

Overview

Person Search Project

This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is modified from the py-faster-rcnn written by Ross Girshick.

Request the dataset from lishuang[at]mit.edu or tong.xiao.work[at]gmail.com (academic only).
Due to licensing issues, please send us your request using your university email.

Installation

  1. Clone this repo recursively
git clone --recursive https://github.com/ShuangLI59/person_search.git
  1. Build Caffe with python layers and interface

We modified caffe based on Yuanjun's fork, which supports multi-gpu and memory optimization.

Apart from the official installation prerequisites, we have several other dependencies:

  • cudnn-v5.1
  • 1.7.4 < openmpi < 2.0.0
  • boost >= 1.55 (A tip for Ubuntu 14.04: sudo apt-get autoremove libboost1.54* then sudo apt-get install libboost1.55-all-dev)

Then compile and install the caffe with

cd caffe
mkdir build && cd build
cmake .. -DUSE_MPI=ON -DCUDNN_INCLUDE=/path/to/cudnn/include -DCUDNN_LIBRARY=/path/to/cudnn/lib64/libcudnn.so
make -j8 && make install
cd ../..

Please refer to this page for detailed installation instructions and troubleshooting.

  1. Build the Cython modules

Install some Python packages you might not have: Cython, python-opencv, easydict (>=1.6), PyYAML, protobuf, mpi4py. Then

cd lib && make && cd ..

Demo

Download our trained model to output/psdb_train/resnet50/, then

python2 tools/demo.py --gpu 0

Or you can use CPU only by setting --gpu -1.

Demo

Experiments

  1. Request the dataset from sli [at] mit.edu or tong.xiao.work[at]gmail.com (academic only). Then
experiments/scripts/prepare_data.sh /path/to/the/downloaded/dataset.zip
  1. Download an ImageNet pretrained ResNet-50 model to data/imagenet_models.

  2. Training with GPU=0

experiments/scripts/train.sh 0 --set EXP_DIR resnet50

It will finish in around 18 hours, or you may directly download a trained model to output/psdb_train/resnet50/

  1. Evaluation

    By default we use 8 GPUs for faster evaluation. Please adjust the experiments/scripts/eval_test.sh with your hardware settings. For example, to use only one GPU, remove the mpirun -n 8 in L14 and change L16 to --gpu 0.

    experiments/scripts/eval_test.sh resnet50 50000 resnet50

    The result should be around

    search ranking:
      mAP = 75.47%
      top- 1 = 78.62%
      top- 5 = 90.24%
      top-10 = 92.38%
  2. Visualization

    The evaluation will also produce a json file output/psdb_test/resnet50/resnet50_iter_50000/results.json for visualization. Just copy it to vis/ and run python2 -m SimpleHTTPServer. Then open a browser and go to http://localhost:8000/vis.

    Visualization Webpage

Citation

@inproceedings{xiaoli2017joint,
  title={Joint Detection and Identification Feature Learning for Person Search},
  author={Xiao, Tong and Li, Shuang and Wang, Bochao and Lin, Liang and Wang, Xiaogang},
  booktitle={CVPR},
  year={2017}
}

Repo History

The first version of our paper was published in 2016. We have made substantial improvements since then and published a new version of paper in 2017. The original code was moved to branch v1 and the new code has been merged to master. If you have checked out our code before, please be careful on this and we recommend clone recursively into a new repo instead.

SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022