Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

Overview

EDSR modelling

A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repository contains all code necessary to recreate the results in the paper [1]. The images that are used in various parts of the code are found on Zenodo at DOI: 10.5281/zenodo.5542624. There is previous experimental and modelling work performed in the papers of [2,3].

Workflow Summary of the workflow, flowing from left to right. First, the EDSR network is trained & tested on paired LR and HR data to produce SR data which emulates the HR data. Second, the trained EDSR is applied to the whole core LR data to generate a whole core SR image. A pore-network model (PNM) is then used to generate 3D continuum properties at REV scale from the post-processed image. Finally, the 3D digital model is validated through continuum modelling (CM) of the muiltiphase flow experiments.

The workflow image above summarises the general approach. We list the detailed steps in the workflow below, linking to specific files and folders where necesary.

1. Generating LR, Cubic and HR data

The low resolution (LR) and high resolution (HR) can be downloaded from Zenodo at DOI: 10.5281/zenodo.5542624. The following code can then be run:

  • A0_0_0_Generate_LR_bicubic.m This code generates Cubic interpolation images from LR images, artifically decreasing the pixel size and interpolating, for use in comparison to HR and SR images later.
  • A0_0_1_Generate_filtered_images_LR_HR.m. This code performs non-local means filtering of the LR, cubic and HR images, given the settings in the paper [1].

2. EDSR network training

The 3d EDSR (Enhanced Deep Super Resolution) convolution neural network used in this work is based on the implementation of the CVPR2017 workshop Paper: "Enhanced Deep Residual Networks for Single Image Super-Resolution" (https://arxiv.org/pdf/1707.02921.pdf) using PyTorch.

The folder 3D_EDSR contains the EDSR network training & testing code. The code is written in Python, and tested in the following environment:

  • Windows 10
  • Python 3.7.4
  • Pytorch 1.8.1
  • cuda 11.2
  • cudnn 8.1.0

The Jupyter notebook Train_review.ipynb, contains cells with the individual .py codes copied in to make one continuous workflow that can be run for EDSR training and validation. In this file, and those listed below, the LR and HR data used for training should be stored in the top level of 3D_EDSR, respectively, as:

  • Core1_Subvol1_LR.tif
  • Core1_Subvol1_HR.tif

To generate suitable training images (sub-slices of the full data above), the following code can be run:

  • train_image_generator.py. This generates LR and registered x3 HR sub-images for EDSR training, sub-image sizes are of flexible size, dependent on the pore-structure. The LR/HR sub-images are separated into two different folders LR and HR

The EDSR model can then be trained on the LR and HR sub-sampled data via:

  • main_edsr.py. This trains the EDSR network on the LR/HR data. It requires the code load_data.py, which is the sub-image loader for EDSR training. It also requires the 3D EDSR model structure code edsr_x3_3d.py. The code then saves the trained network as 3D_EDSR.pt. The version supplied here is that trained and used in the paper.

To view the training loss performance, the data can be output and saved to .txt files. The data can then be used in:

3. EDSR network verification

The trained EDSR network at 3D_EDSR.pt can be verified by generating SR images from a different LR image to that which was used in training. Here we use the second subvolume from core 1, found on Zenodo at DOI: 10.5281/zenodo.5542624:

  • Core1_Subvol2_LR.tif

The trained EDSR model can then be run on the LR data using:

  • validation_image_generator.py. This creates input validation LR images. The validation LR images have large size in x,y axes and small size in z axis to reduce computational cost.
  • main_edsr_validation.py. The validation LR images are used with the trained EDSR model to generate 3D SR subimages. These can be saved in the folder SR_subdata as the Jupyter notebook Train_review.ipynb does. The SR subimages are then stacked to form a whole 3D SR image.

Following the generation of suitable verification images, various metrics can be calculated from the images to judge performance against the true HR data:

Following the generation of these metrics, several plotting codes can be run to compare LR, Cubic, HR and SR results:

4. Continuum modelling and validation

After the EDSR images have been verified using the image metrics and pore-network model simulations, the EDSR network can be used to generate continuum scale models, for validation with experimental results. We compare the simulations using the continuum models to the accompanying experimental dataset in [2]. First, the following codes are run on each subvolume of the whole core images, as per the verification section:

The subvolume (and whole-core) images can be found on the Digital Rocks Portal and on the BGS National Geoscience Data Centre, respectively. This will result in SR images (with the pre-exising LR) of each subvolume in both cores 1 and 2. After this, pore-network modelling can be performed using:

The whole core results can then be compiled into a single dataset .mat file using:

To visualise the petrophysical properties for the whole core, the following code can be run:

Continuum models can then be generated using the 3D petrophysical properties. We generate continuum properties for the multiphase flow simulator CMG IMEX. The simulator reads in .dat files which use .inc files of the 3D petrophsical properties to perform continuum scale immiscible drainage multiphase flow simulations, at fixed fractional flow of decane and brine. The simulations run until steady-state, and the results can be compared to the experiments on a 1:1 basis. The following codes generate, and run the files in CMG IMEX (has to be installed seperately):

Example CMG IMEX simulation files, which are generated from these codes, are given for core 1 in the folder CMG_IMEX_files

The continuum simulation outputs can be compared to the experimental results, namely 3D saturations and pressures in the form of absolute and relative permeability. The whole core results from our simulations are summarised in the file Whole_core_results_exp_sim.xlsx along with experimental results. The following code can be run:

  • A1_1_2_Plot_IMEX_continuum_results.m. This plots graphs of the continuum model results from above in terms of 3D saturations and pressure compared to the experimental results. The experimental data is stored in Exp_data.

5. Extra Folders

  • Functions. This contains functions used in some of the .m files above.
  • media. This folder contains the workflow image.

6. References

  1. Jackson, S.J, Niu, Y., Manoorkar, S., Mostaghimi, P. and Armstrong, R.T. 2021. Deep learning of multi-resolution X-Ray micro-CT images for multi-scale modelling.
  2. Jackson, S.J., Lin, Q. and Krevor, S. 2020. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow from the Pore to Continuum Scale. Water Resources Research, 56(6), e2019WR026396
  3. Zahasky, C., Jackson, S.J., Lin, Q., and Krevor, S. 2020. Pore network model predictions of Darcy‐scale multiphase flow heterogeneity validated by experiments. Water Resources Research, 56(6), e e2019WR026708.
Owner
Samuel Jackson
Research Scientist @CSIRO Energy
Samuel Jackson
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022