Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

Overview

EDSR modelling

A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repository contains all code necessary to recreate the results in the paper [1]. The images that are used in various parts of the code are found on Zenodo at DOI: 10.5281/zenodo.5542624. There is previous experimental and modelling work performed in the papers of [2,3].

Workflow Summary of the workflow, flowing from left to right. First, the EDSR network is trained & tested on paired LR and HR data to produce SR data which emulates the HR data. Second, the trained EDSR is applied to the whole core LR data to generate a whole core SR image. A pore-network model (PNM) is then used to generate 3D continuum properties at REV scale from the post-processed image. Finally, the 3D digital model is validated through continuum modelling (CM) of the muiltiphase flow experiments.

The workflow image above summarises the general approach. We list the detailed steps in the workflow below, linking to specific files and folders where necesary.

1. Generating LR, Cubic and HR data

The low resolution (LR) and high resolution (HR) can be downloaded from Zenodo at DOI: 10.5281/zenodo.5542624. The following code can then be run:

  • A0_0_0_Generate_LR_bicubic.m This code generates Cubic interpolation images from LR images, artifically decreasing the pixel size and interpolating, for use in comparison to HR and SR images later.
  • A0_0_1_Generate_filtered_images_LR_HR.m. This code performs non-local means filtering of the LR, cubic and HR images, given the settings in the paper [1].

2. EDSR network training

The 3d EDSR (Enhanced Deep Super Resolution) convolution neural network used in this work is based on the implementation of the CVPR2017 workshop Paper: "Enhanced Deep Residual Networks for Single Image Super-Resolution" (https://arxiv.org/pdf/1707.02921.pdf) using PyTorch.

The folder 3D_EDSR contains the EDSR network training & testing code. The code is written in Python, and tested in the following environment:

  • Windows 10
  • Python 3.7.4
  • Pytorch 1.8.1
  • cuda 11.2
  • cudnn 8.1.0

The Jupyter notebook Train_review.ipynb, contains cells with the individual .py codes copied in to make one continuous workflow that can be run for EDSR training and validation. In this file, and those listed below, the LR and HR data used for training should be stored in the top level of 3D_EDSR, respectively, as:

  • Core1_Subvol1_LR.tif
  • Core1_Subvol1_HR.tif

To generate suitable training images (sub-slices of the full data above), the following code can be run:

  • train_image_generator.py. This generates LR and registered x3 HR sub-images for EDSR training, sub-image sizes are of flexible size, dependent on the pore-structure. The LR/HR sub-images are separated into two different folders LR and HR

The EDSR model can then be trained on the LR and HR sub-sampled data via:

  • main_edsr.py. This trains the EDSR network on the LR/HR data. It requires the code load_data.py, which is the sub-image loader for EDSR training. It also requires the 3D EDSR model structure code edsr_x3_3d.py. The code then saves the trained network as 3D_EDSR.pt. The version supplied here is that trained and used in the paper.

To view the training loss performance, the data can be output and saved to .txt files. The data can then be used in:

3. EDSR network verification

The trained EDSR network at 3D_EDSR.pt can be verified by generating SR images from a different LR image to that which was used in training. Here we use the second subvolume from core 1, found on Zenodo at DOI: 10.5281/zenodo.5542624:

  • Core1_Subvol2_LR.tif

The trained EDSR model can then be run on the LR data using:

  • validation_image_generator.py. This creates input validation LR images. The validation LR images have large size in x,y axes and small size in z axis to reduce computational cost.
  • main_edsr_validation.py. The validation LR images are used with the trained EDSR model to generate 3D SR subimages. These can be saved in the folder SR_subdata as the Jupyter notebook Train_review.ipynb does. The SR subimages are then stacked to form a whole 3D SR image.

Following the generation of suitable verification images, various metrics can be calculated from the images to judge performance against the true HR data:

Following the generation of these metrics, several plotting codes can be run to compare LR, Cubic, HR and SR results:

4. Continuum modelling and validation

After the EDSR images have been verified using the image metrics and pore-network model simulations, the EDSR network can be used to generate continuum scale models, for validation with experimental results. We compare the simulations using the continuum models to the accompanying experimental dataset in [2]. First, the following codes are run on each subvolume of the whole core images, as per the verification section:

The subvolume (and whole-core) images can be found on the Digital Rocks Portal and on the BGS National Geoscience Data Centre, respectively. This will result in SR images (with the pre-exising LR) of each subvolume in both cores 1 and 2. After this, pore-network modelling can be performed using:

The whole core results can then be compiled into a single dataset .mat file using:

To visualise the petrophysical properties for the whole core, the following code can be run:

Continuum models can then be generated using the 3D petrophysical properties. We generate continuum properties for the multiphase flow simulator CMG IMEX. The simulator reads in .dat files which use .inc files of the 3D petrophsical properties to perform continuum scale immiscible drainage multiphase flow simulations, at fixed fractional flow of decane and brine. The simulations run until steady-state, and the results can be compared to the experiments on a 1:1 basis. The following codes generate, and run the files in CMG IMEX (has to be installed seperately):

Example CMG IMEX simulation files, which are generated from these codes, are given for core 1 in the folder CMG_IMEX_files

The continuum simulation outputs can be compared to the experimental results, namely 3D saturations and pressures in the form of absolute and relative permeability. The whole core results from our simulations are summarised in the file Whole_core_results_exp_sim.xlsx along with experimental results. The following code can be run:

  • A1_1_2_Plot_IMEX_continuum_results.m. This plots graphs of the continuum model results from above in terms of 3D saturations and pressure compared to the experimental results. The experimental data is stored in Exp_data.

5. Extra Folders

  • Functions. This contains functions used in some of the .m files above.
  • media. This folder contains the workflow image.

6. References

  1. Jackson, S.J, Niu, Y., Manoorkar, S., Mostaghimi, P. and Armstrong, R.T. 2021. Deep learning of multi-resolution X-Ray micro-CT images for multi-scale modelling.
  2. Jackson, S.J., Lin, Q. and Krevor, S. 2020. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow from the Pore to Continuum Scale. Water Resources Research, 56(6), e2019WR026396
  3. Zahasky, C., Jackson, S.J., Lin, Q., and Krevor, S. 2020. Pore network model predictions of Darcy‐scale multiphase flow heterogeneity validated by experiments. Water Resources Research, 56(6), e e2019WR026708.
Owner
Samuel Jackson
Research Scientist @CSIRO Energy
Samuel Jackson
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023