Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

Overview

EDSR modelling

A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repository contains all code necessary to recreate the results in the paper [1]. The images that are used in various parts of the code are found on Zenodo at DOI: 10.5281/zenodo.5542624. There is previous experimental and modelling work performed in the papers of [2,3].

Workflow Summary of the workflow, flowing from left to right. First, the EDSR network is trained & tested on paired LR and HR data to produce SR data which emulates the HR data. Second, the trained EDSR is applied to the whole core LR data to generate a whole core SR image. A pore-network model (PNM) is then used to generate 3D continuum properties at REV scale from the post-processed image. Finally, the 3D digital model is validated through continuum modelling (CM) of the muiltiphase flow experiments.

The workflow image above summarises the general approach. We list the detailed steps in the workflow below, linking to specific files and folders where necesary.

1. Generating LR, Cubic and HR data

The low resolution (LR) and high resolution (HR) can be downloaded from Zenodo at DOI: 10.5281/zenodo.5542624. The following code can then be run:

  • A0_0_0_Generate_LR_bicubic.m This code generates Cubic interpolation images from LR images, artifically decreasing the pixel size and interpolating, for use in comparison to HR and SR images later.
  • A0_0_1_Generate_filtered_images_LR_HR.m. This code performs non-local means filtering of the LR, cubic and HR images, given the settings in the paper [1].

2. EDSR network training

The 3d EDSR (Enhanced Deep Super Resolution) convolution neural network used in this work is based on the implementation of the CVPR2017 workshop Paper: "Enhanced Deep Residual Networks for Single Image Super-Resolution" (https://arxiv.org/pdf/1707.02921.pdf) using PyTorch.

The folder 3D_EDSR contains the EDSR network training & testing code. The code is written in Python, and tested in the following environment:

  • Windows 10
  • Python 3.7.4
  • Pytorch 1.8.1
  • cuda 11.2
  • cudnn 8.1.0

The Jupyter notebook Train_review.ipynb, contains cells with the individual .py codes copied in to make one continuous workflow that can be run for EDSR training and validation. In this file, and those listed below, the LR and HR data used for training should be stored in the top level of 3D_EDSR, respectively, as:

  • Core1_Subvol1_LR.tif
  • Core1_Subvol1_HR.tif

To generate suitable training images (sub-slices of the full data above), the following code can be run:

  • train_image_generator.py. This generates LR and registered x3 HR sub-images for EDSR training, sub-image sizes are of flexible size, dependent on the pore-structure. The LR/HR sub-images are separated into two different folders LR and HR

The EDSR model can then be trained on the LR and HR sub-sampled data via:

  • main_edsr.py. This trains the EDSR network on the LR/HR data. It requires the code load_data.py, which is the sub-image loader for EDSR training. It also requires the 3D EDSR model structure code edsr_x3_3d.py. The code then saves the trained network as 3D_EDSR.pt. The version supplied here is that trained and used in the paper.

To view the training loss performance, the data can be output and saved to .txt files. The data can then be used in:

3. EDSR network verification

The trained EDSR network at 3D_EDSR.pt can be verified by generating SR images from a different LR image to that which was used in training. Here we use the second subvolume from core 1, found on Zenodo at DOI: 10.5281/zenodo.5542624:

  • Core1_Subvol2_LR.tif

The trained EDSR model can then be run on the LR data using:

  • validation_image_generator.py. This creates input validation LR images. The validation LR images have large size in x,y axes and small size in z axis to reduce computational cost.
  • main_edsr_validation.py. The validation LR images are used with the trained EDSR model to generate 3D SR subimages. These can be saved in the folder SR_subdata as the Jupyter notebook Train_review.ipynb does. The SR subimages are then stacked to form a whole 3D SR image.

Following the generation of suitable verification images, various metrics can be calculated from the images to judge performance against the true HR data:

Following the generation of these metrics, several plotting codes can be run to compare LR, Cubic, HR and SR results:

4. Continuum modelling and validation

After the EDSR images have been verified using the image metrics and pore-network model simulations, the EDSR network can be used to generate continuum scale models, for validation with experimental results. We compare the simulations using the continuum models to the accompanying experimental dataset in [2]. First, the following codes are run on each subvolume of the whole core images, as per the verification section:

The subvolume (and whole-core) images can be found on the Digital Rocks Portal and on the BGS National Geoscience Data Centre, respectively. This will result in SR images (with the pre-exising LR) of each subvolume in both cores 1 and 2. After this, pore-network modelling can be performed using:

The whole core results can then be compiled into a single dataset .mat file using:

To visualise the petrophysical properties for the whole core, the following code can be run:

Continuum models can then be generated using the 3D petrophysical properties. We generate continuum properties for the multiphase flow simulator CMG IMEX. The simulator reads in .dat files which use .inc files of the 3D petrophsical properties to perform continuum scale immiscible drainage multiphase flow simulations, at fixed fractional flow of decane and brine. The simulations run until steady-state, and the results can be compared to the experiments on a 1:1 basis. The following codes generate, and run the files in CMG IMEX (has to be installed seperately):

Example CMG IMEX simulation files, which are generated from these codes, are given for core 1 in the folder CMG_IMEX_files

The continuum simulation outputs can be compared to the experimental results, namely 3D saturations and pressures in the form of absolute and relative permeability. The whole core results from our simulations are summarised in the file Whole_core_results_exp_sim.xlsx along with experimental results. The following code can be run:

  • A1_1_2_Plot_IMEX_continuum_results.m. This plots graphs of the continuum model results from above in terms of 3D saturations and pressure compared to the experimental results. The experimental data is stored in Exp_data.

5. Extra Folders

  • Functions. This contains functions used in some of the .m files above.
  • media. This folder contains the workflow image.

6. References

  1. Jackson, S.J, Niu, Y., Manoorkar, S., Mostaghimi, P. and Armstrong, R.T. 2021. Deep learning of multi-resolution X-Ray micro-CT images for multi-scale modelling.
  2. Jackson, S.J., Lin, Q. and Krevor, S. 2020. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow from the Pore to Continuum Scale. Water Resources Research, 56(6), e2019WR026396
  3. Zahasky, C., Jackson, S.J., Lin, Q., and Krevor, S. 2020. Pore network model predictions of Darcy‐scale multiphase flow heterogeneity validated by experiments. Water Resources Research, 56(6), e e2019WR026708.
Owner
Samuel Jackson
Research Scientist @CSIRO Energy
Samuel Jackson
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022