Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

Overview

EDSR modelling

A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repository contains all code necessary to recreate the results in the paper [1]. The images that are used in various parts of the code are found on Zenodo at DOI: 10.5281/zenodo.5542624. There is previous experimental and modelling work performed in the papers of [2,3].

Workflow Summary of the workflow, flowing from left to right. First, the EDSR network is trained & tested on paired LR and HR data to produce SR data which emulates the HR data. Second, the trained EDSR is applied to the whole core LR data to generate a whole core SR image. A pore-network model (PNM) is then used to generate 3D continuum properties at REV scale from the post-processed image. Finally, the 3D digital model is validated through continuum modelling (CM) of the muiltiphase flow experiments.

The workflow image above summarises the general approach. We list the detailed steps in the workflow below, linking to specific files and folders where necesary.

1. Generating LR, Cubic and HR data

The low resolution (LR) and high resolution (HR) can be downloaded from Zenodo at DOI: 10.5281/zenodo.5542624. The following code can then be run:

  • A0_0_0_Generate_LR_bicubic.m This code generates Cubic interpolation images from LR images, artifically decreasing the pixel size and interpolating, for use in comparison to HR and SR images later.
  • A0_0_1_Generate_filtered_images_LR_HR.m. This code performs non-local means filtering of the LR, cubic and HR images, given the settings in the paper [1].

2. EDSR network training

The 3d EDSR (Enhanced Deep Super Resolution) convolution neural network used in this work is based on the implementation of the CVPR2017 workshop Paper: "Enhanced Deep Residual Networks for Single Image Super-Resolution" (https://arxiv.org/pdf/1707.02921.pdf) using PyTorch.

The folder 3D_EDSR contains the EDSR network training & testing code. The code is written in Python, and tested in the following environment:

  • Windows 10
  • Python 3.7.4
  • Pytorch 1.8.1
  • cuda 11.2
  • cudnn 8.1.0

The Jupyter notebook Train_review.ipynb, contains cells with the individual .py codes copied in to make one continuous workflow that can be run for EDSR training and validation. In this file, and those listed below, the LR and HR data used for training should be stored in the top level of 3D_EDSR, respectively, as:

  • Core1_Subvol1_LR.tif
  • Core1_Subvol1_HR.tif

To generate suitable training images (sub-slices of the full data above), the following code can be run:

  • train_image_generator.py. This generates LR and registered x3 HR sub-images for EDSR training, sub-image sizes are of flexible size, dependent on the pore-structure. The LR/HR sub-images are separated into two different folders LR and HR

The EDSR model can then be trained on the LR and HR sub-sampled data via:

  • main_edsr.py. This trains the EDSR network on the LR/HR data. It requires the code load_data.py, which is the sub-image loader for EDSR training. It also requires the 3D EDSR model structure code edsr_x3_3d.py. The code then saves the trained network as 3D_EDSR.pt. The version supplied here is that trained and used in the paper.

To view the training loss performance, the data can be output and saved to .txt files. The data can then be used in:

3. EDSR network verification

The trained EDSR network at 3D_EDSR.pt can be verified by generating SR images from a different LR image to that which was used in training. Here we use the second subvolume from core 1, found on Zenodo at DOI: 10.5281/zenodo.5542624:

  • Core1_Subvol2_LR.tif

The trained EDSR model can then be run on the LR data using:

  • validation_image_generator.py. This creates input validation LR images. The validation LR images have large size in x,y axes and small size in z axis to reduce computational cost.
  • main_edsr_validation.py. The validation LR images are used with the trained EDSR model to generate 3D SR subimages. These can be saved in the folder SR_subdata as the Jupyter notebook Train_review.ipynb does. The SR subimages are then stacked to form a whole 3D SR image.

Following the generation of suitable verification images, various metrics can be calculated from the images to judge performance against the true HR data:

Following the generation of these metrics, several plotting codes can be run to compare LR, Cubic, HR and SR results:

4. Continuum modelling and validation

After the EDSR images have been verified using the image metrics and pore-network model simulations, the EDSR network can be used to generate continuum scale models, for validation with experimental results. We compare the simulations using the continuum models to the accompanying experimental dataset in [2]. First, the following codes are run on each subvolume of the whole core images, as per the verification section:

The subvolume (and whole-core) images can be found on the Digital Rocks Portal and on the BGS National Geoscience Data Centre, respectively. This will result in SR images (with the pre-exising LR) of each subvolume in both cores 1 and 2. After this, pore-network modelling can be performed using:

The whole core results can then be compiled into a single dataset .mat file using:

To visualise the petrophysical properties for the whole core, the following code can be run:

Continuum models can then be generated using the 3D petrophysical properties. We generate continuum properties for the multiphase flow simulator CMG IMEX. The simulator reads in .dat files which use .inc files of the 3D petrophsical properties to perform continuum scale immiscible drainage multiphase flow simulations, at fixed fractional flow of decane and brine. The simulations run until steady-state, and the results can be compared to the experiments on a 1:1 basis. The following codes generate, and run the files in CMG IMEX (has to be installed seperately):

Example CMG IMEX simulation files, which are generated from these codes, are given for core 1 in the folder CMG_IMEX_files

The continuum simulation outputs can be compared to the experimental results, namely 3D saturations and pressures in the form of absolute and relative permeability. The whole core results from our simulations are summarised in the file Whole_core_results_exp_sim.xlsx along with experimental results. The following code can be run:

  • A1_1_2_Plot_IMEX_continuum_results.m. This plots graphs of the continuum model results from above in terms of 3D saturations and pressure compared to the experimental results. The experimental data is stored in Exp_data.

5. Extra Folders

  • Functions. This contains functions used in some of the .m files above.
  • media. This folder contains the workflow image.

6. References

  1. Jackson, S.J, Niu, Y., Manoorkar, S., Mostaghimi, P. and Armstrong, R.T. 2021. Deep learning of multi-resolution X-Ray micro-CT images for multi-scale modelling.
  2. Jackson, S.J., Lin, Q. and Krevor, S. 2020. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow from the Pore to Continuum Scale. Water Resources Research, 56(6), e2019WR026396
  3. Zahasky, C., Jackson, S.J., Lin, Q., and Krevor, S. 2020. Pore network model predictions of Darcy‐scale multiphase flow heterogeneity validated by experiments. Water Resources Research, 56(6), e e2019WR026708.
Owner
Samuel Jackson
Research Scientist @CSIRO Energy
Samuel Jackson
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022