MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

Related tags

Deep LearningMAVE
Overview

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories created from 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attribute extraction study.

More details can be found in paper: https://arxiv.org/abs/2112.08663

The dataset is in JSON Lines format, where each line is a json object with the following schema:

, "category": , "paragraphs": [ { "text": , "source": }, ... ], "attributes": [ { "key": , "evidences": [ { "value": , "pid": , "begin": , "end": }, ... ] }, ... ] }">
{
   "id": 
           
            ,
   "category": 
            
             ,
   "paragraphs": [
      {
         "text": 
             
              ,
         "source": 
              
               
      },
      ...
   ],
   "attributes": [
      {
         "key": 
               
                , "evidences": [ { "value": 
                
                 , "pid": 
                 
                  , "begin": 
                  
                   , "end": 
                   
                     }, ... ] }, ... ] } 
                   
                  
                 
                
               
              
             
            
           

The product id is exactly the ASIN number in the All_Amazon_Meta.json file in the Amazon Review Data (2018). In this repo, we don't store paragraphs, instead we only store the labels. To obtain the full version of the dataset contaning the paragraphs, we suggest to first request the Amazon Review Data (2018), then run our binary to clean its product metadata and join with the labels as described below.

A json object contains a product and multiple attributes. A concrete example is shown as follows

{
   "id":"B0002H0A3S",
   "category":"Guitar Strings",
   "paragraphs":[
      {
         "text":"D'Addario EJ26 Phosphor Bronze Acoustic Guitar Strings, Custom Light, 11-52",
         "source":"title"
      },
      {
         "text":".011-.052 Custom Light Gauge Acoustic Guitar Strings, Phosphor Bronze",
         "source":"description"
      },
      ...
   ],
   "attributes":[
      {
         "key":"Core Material",
         "evidences":[
            {
               "value":"Bronze Acoustic",
               "pid":0,
               "begin":24,
               "end":39
            },
            ...
         ]
      },
      {
         "key":"Winding Material",
         "evidences":[
            {
               "value":"Phosphor Bronze",
               "pid":0,
               "begin":15,
               "end":30
            },
            ...
         ]
      },
      {
         "key":"Gauge",
         "evidences":[
            {
               "value":"Light",
               "pid":0,
               "begin":63,
               "end":68
            },
            {
               "value":"Light Gauge",
               "pid":1,
               "begin":17,
               "end":28
            },
            ...
         ]
      }
   ]
}

In addition to positive examples, we also provide a set of negative examples, i.e. (product, attribute name) pairs without any evidence. The overall statistics of the positive and negative sets are as follows

Counts Positives Negatives
# products 2226509 1248009
# product-attribute pairs 2987151 1780428
# products with 1-2 attributes 2102927 1140561
# products with 3-5 attributes 121897 99896
# products with >=6 attributes 1685 7552
# unique categories 1257 1114
# unique attributes 705 693
# unique category-attribute pairs 2535 2305

Creating the full version of the dataset

In this repo, we only open source the labels of the MAVE dataset and the code to deterministically clean the original Amazon product metadata in the Amazon Review Data (2018), and join with the labels to generate the full version of the MAVE dataset. After this process, the attribute values, paragraph ids and begin/end span indices will be consistent with the cleaned product profiles.

Step 1

Gain access to the Amazon Review Data (2018) and download the All_Amazon_Meta.json file to the folder of this repo.

Step 2

Run script

./clean_amazon_product_metadata_main.sh

to clean the Amazon metadata and join with the positive and negative labels in the labels/ folder. The output full MAVE dataset will be stored in the reproduce/ folder.

The script runs the clean_amazon_product_metadata_main.py binary using an apache beam pipeline. The binary will run on a single CPU core, but distributed setup can be enabled by changing pipeline options. The binary contains all util functions used to clean the Amazon metadata and join with labels. The pipeline will finish within a few hours on a single Intel Xeon 3GHz CPU core.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022