MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

Related tags

Deep LearningMAVE
Overview

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories created from 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attribute extraction study.

More details can be found in paper: https://arxiv.org/abs/2112.08663

The dataset is in JSON Lines format, where each line is a json object with the following schema:

, "category": , "paragraphs": [ { "text": , "source": }, ... ], "attributes": [ { "key": , "evidences": [ { "value": , "pid": , "begin": , "end": }, ... ] }, ... ] }">
{
   "id": 
           
            ,
   "category": 
            
             ,
   "paragraphs": [
      {
         "text": 
             
              ,
         "source": 
              
               
      },
      ...
   ],
   "attributes": [
      {
         "key": 
               
                , "evidences": [ { "value": 
                
                 , "pid": 
                 
                  , "begin": 
                  
                   , "end": 
                   
                     }, ... ] }, ... ] } 
                   
                  
                 
                
               
              
             
            
           

The product id is exactly the ASIN number in the All_Amazon_Meta.json file in the Amazon Review Data (2018). In this repo, we don't store paragraphs, instead we only store the labels. To obtain the full version of the dataset contaning the paragraphs, we suggest to first request the Amazon Review Data (2018), then run our binary to clean its product metadata and join with the labels as described below.

A json object contains a product and multiple attributes. A concrete example is shown as follows

{
   "id":"B0002H0A3S",
   "category":"Guitar Strings",
   "paragraphs":[
      {
         "text":"D'Addario EJ26 Phosphor Bronze Acoustic Guitar Strings, Custom Light, 11-52",
         "source":"title"
      },
      {
         "text":".011-.052 Custom Light Gauge Acoustic Guitar Strings, Phosphor Bronze",
         "source":"description"
      },
      ...
   ],
   "attributes":[
      {
         "key":"Core Material",
         "evidences":[
            {
               "value":"Bronze Acoustic",
               "pid":0,
               "begin":24,
               "end":39
            },
            ...
         ]
      },
      {
         "key":"Winding Material",
         "evidences":[
            {
               "value":"Phosphor Bronze",
               "pid":0,
               "begin":15,
               "end":30
            },
            ...
         ]
      },
      {
         "key":"Gauge",
         "evidences":[
            {
               "value":"Light",
               "pid":0,
               "begin":63,
               "end":68
            },
            {
               "value":"Light Gauge",
               "pid":1,
               "begin":17,
               "end":28
            },
            ...
         ]
      }
   ]
}

In addition to positive examples, we also provide a set of negative examples, i.e. (product, attribute name) pairs without any evidence. The overall statistics of the positive and negative sets are as follows

Counts Positives Negatives
# products 2226509 1248009
# product-attribute pairs 2987151 1780428
# products with 1-2 attributes 2102927 1140561
# products with 3-5 attributes 121897 99896
# products with >=6 attributes 1685 7552
# unique categories 1257 1114
# unique attributes 705 693
# unique category-attribute pairs 2535 2305

Creating the full version of the dataset

In this repo, we only open source the labels of the MAVE dataset and the code to deterministically clean the original Amazon product metadata in the Amazon Review Data (2018), and join with the labels to generate the full version of the MAVE dataset. After this process, the attribute values, paragraph ids and begin/end span indices will be consistent with the cleaned product profiles.

Step 1

Gain access to the Amazon Review Data (2018) and download the All_Amazon_Meta.json file to the folder of this repo.

Step 2

Run script

./clean_amazon_product_metadata_main.sh

to clean the Amazon metadata and join with the positive and negative labels in the labels/ folder. The output full MAVE dataset will be stored in the reproduce/ folder.

The script runs the clean_amazon_product_metadata_main.py binary using an apache beam pipeline. The binary will run on a single CPU core, but distributed setup can be enabled by changing pipeline options. The binary contains all util functions used to clean the Amazon metadata and join with labels. The pipeline will finish within a few hours on a single Intel Xeon 3GHz CPU core.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022