CONditionals for Ordinal Regression and classification in tensorflow

Overview

Condor Ordinal regression in Tensorflow Keras

Continuous Integration License Python 3

Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jenkinson et al (2021).

CONDOR is compatible with any state-of-the-art deep neural network architecture, requiring only modification of the output layer, the labels, and the loss function. Read our full documentation to learn more.

We also have implemented CONDOR for pytorch.

This package includes:

  • Ordinal tensorflow loss function: CondorOrdinalCrossEntropy
  • Ordinal tensorflow error metric: OrdinalMeanAbsoluteError
  • Ordinal tensorflow error metric: OrdinalEarthMoversDistance
  • Ordinal tensorflow sparse loss function: CondorSparseOrdinalCrossEntropy
  • Ordinal tensorflow sparse error metric: SparseOrdinalMeanAbsoluteError
  • Ordinal tensorflow sparse error metric: SparseOrdinalEarthMoversDistance
  • Ordinal tensorflow activation function: ordinal_softmax
  • Ordinal sklearn label encoder: CondorOrdinalEncoder

Installation

Install the stable version via pip:

pip install condor-tensorflow

Alternatively install the most recent code on GitHub via pip:

pip install git+https://github.com/GarrettJenkinson/condor_tensorflow/

condor_tensorflow should now be available for use as a Python library.

Docker container

As an alternative to the above, we provide a convenient Dockerfile that will build a container with condor_tensorflow along with all of its dependencies (Python 3.6+, Tensorflow 2.2+, sklearn, numpy). This can be used as follows:

# Clone this git repository
git clone https://github.com/GarrettJenkinson/condor_tensorflow/

# Change directory to the cloned repository root
cd condor_tensorflow

# Create a docker image
docker build -t cpu_tensorflow -f cpu.Dockerfile ./

# run image to serve a jupyter notebook 
docker run -it -p 8888:8888 --rm cpu_tensorflow

# how to run bash inside container (with Python that will have required dependencies available)
docker run -u $(id -u):$(id -g) -it -p 8888:8888 --rm cpu_tensorflow bash

Assuming a GPU enabled machine with NVIDIA drivers installed replace cpu above with gpu.

Example

This is a quick example to show basic model implementation syntax.
Example assumes existence of input data (variable 'X') and ordinal labels (variable 'labels').

import tensorflow as tf
import condor_tensorflow as condor
NUM_CLASSES = 5
# Ordinal 'labels' variable has 5 labels, 0 through 4.
enc_labs = condor.CondorOrdinalEncoder(nclasses=NUM_CLASSES).fit_transform(labels)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, activation = "relu"))
model.add(tf.keras.layers.Dense(NUM_CLASSES-1)) # Note the "-1"
model.compile(loss = condor.CondorOrdinalCrossEntropy(),
              metrics = [condor.OrdinalMeanAbsoluteError()])
model.fit(x = X, y = enc_labs)

See this colab notebook for extended examples of ordinal regression with MNIST and Amazon reviews (universal sentence encoder).

Please post any issues to the issue queue.

Acknowledgments: Many thanks to the CORAL ordinal authors and the CORAL pytorch authors whose repos provided a roadmap for this codebase.

References

Jenkinson, Khezeli, Oliver, Kalantari, Klee. Universally rank consistent ordinal regression in neural networks, arXiv:2110.07470, 2021.

Comments
  • providing weighted metric  causes error

    providing weighted metric causes error

    example code:

    compileOptions = {
    'optimizer': tf.keras.optimizers.Adam(learning_rate=5e-4),
    'loss': condor.CondorOrdinalCrossEntropy(),
    'metrics': [
                condor.OrdinalEarthMoversDistance(name='condorErrOrdinalMoversDist'),
                condor.OrdinalMeanAbsoluteError(name='ordinalMAbsErr')
                ]
    'weighted_metrics': [
                condor.OrdinalEarthMoversDistance(name='condorErrOrdinalMoversDist'),
                condor.OrdinalMeanAbsoluteError(name='ordinalMAbsErr')
                ]
    }
    
    model.compile(**compileOptions)
    model.fit(x=X_train,y=Y_train,batch_size=32,epochs=100,validation_data=(x_val, y_val, val_sample_weights), sample_weight=sampleweight_train)
    
    

    would generate the following error:

    
        File "/usr/local/lib/python3.7/dist-packages/condor_tensorflow/metrics.py", line 24, in update_state  *
            if sample_weight:
    
        ValueError: condition of if statement expected to be `tf.bool` scalar, got Tensor("ExpandDims_1:0", shape=(None, 1), dtype=float32); to use as boolean Tensor, use `tf.cast`; to check for None, use `is not None`
    

    If I don't provide weighted_metrics in model.compile option but remain to use sample_weight=sampleweight_train argument in model.fit, no errors would show up.

    Thank you!

    enhancement 
    opened by tingjhenjiang 7
  • loss reduction support

    loss reduction support

    While I want to do a distributed training including training on Google Colab TPU, errors as shown below would occurs:

    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
        528     self._self_setattr_tracking = False  # pylint: disable=protected-access
        529     try:
    --> 530       result = method(self, *args, **kwargs)
        531     finally:
        532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, distribute, **kwargs)
        434           targets=self._targets,
        435           skip_target_masks=self._prepare_skip_target_masks(),
    --> 436           masks=self._prepare_output_masks())
        437 
        438       # Prepare sample weight modes. List with the same length as model outputs.
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in _handle_metrics(self, outputs, targets, skip_target_masks, sample_weights, masks, return_weighted_metrics, return_weighted_and_unweighted_metrics)
       1962           metric_results.extend(
       1963               self._handle_per_output_metrics(self._per_output_metrics[i],
    -> 1964                                               target, output, output_mask))
       1965         if return_weighted_and_unweighted_metrics or return_weighted_metrics:
       1966           metric_results.extend(
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in _handle_per_output_metrics(self, metrics_dict, y_true, y_pred, mask, weights)
       1913       with backend.name_scope(metric_name):
       1914         metric_result = training_utils_v1.call_metric_function(
    -> 1915             metric_fn, y_true, y_pred, weights=weights, mask=mask)
       1916         metric_results.append(metric_result)
       1917     return metric_results
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_utils_v1.py in call_metric_function(metric_fn, y_true, y_pred, weights, mask)
       1175 
       1176   if y_pred is not None:
    -> 1177     return metric_fn(y_true, y_pred, sample_weight=weights)
       1178   # `Mean` metric only takes a single value.
       1179   return metric_fn(y_true, sample_weight=weights)
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in __call__(self, *args, **kwargs)
        235     from keras.distribute import distributed_training_utils  # pylint:disable=g-import-not-at-top
        236     return distributed_training_utils.call_replica_local_fn(
    --> 237         replica_local_fn, *args, **kwargs)
        238 
        239   def __str__(self):
    
    /usr/local/lib/python3.7/dist-packages/keras/distribute/distributed_training_utils.py in call_replica_local_fn(fn, *args, **kwargs)
         58     with strategy.scope():
         59       return strategy.extended.call_for_each_replica(fn, args, kwargs)
    ---> 60   return fn(*args, **kwargs)
         61 
         62 
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in replica_local_fn(*args, **kwargs)
        215         update_op = None
        216       else:
    --> 217         update_op = self.update_state(*args, **kwargs)  # pylint: disable=not-callable
        218       update_ops = []
        219       if update_op is not None:
    
    /usr/local/lib/python3.7/dist-packages/keras/utils/metrics_utils.py in decorated(metric_obj, *args, **kwargs)
         71 
         72     with tf_utils.graph_context_for_symbolic_tensors(*args, **kwargs):
    ---> 73       update_op = update_state_fn(*args, **kwargs)
         74     if update_op is not None:  # update_op will be None in eager execution.
         75       metric_obj.add_update(update_op)
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in update_state_fn(*args, **kwargs)
        175         control_status = tf.__internal__.autograph.control_status_ctx()
        176         ag_update_state = tf.__internal__.autograph.tf_convert(obj_update_state, control_status)
    --> 177         return ag_update_state(*args, **kwargs)
        178     else:
        179       if isinstance(obj.update_state, tf.__internal__.function.Function):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
        694       try:
        695         with conversion_ctx:
    --> 696           return converted_call(f, args, kwargs, options=options)
        697       except Exception as e:  # pylint:disable=broad-except
        698         if hasattr(e, 'ag_error_metadata'):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in converted_call(f, args, kwargs, caller_fn_scope, options)
        381 
        382   if not options.user_requested and conversion.is_allowlisted(f):
    --> 383     return _call_unconverted(f, args, kwargs, options)
        384 
        385   # internal_convert_user_code is for example turned off when issuing a dynamic
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in _call_unconverted(f, args, kwargs, options, update_cache)
        462 
        463   if kwargs is not None:
    --> 464     return f(*args, **kwargs)
        465   return f(*args)
        466 
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in update_state(self, y_true, y_pred, sample_weight)
        723 
        724     ag_fn = tf.__internal__.autograph.tf_convert(self._fn, tf.__internal__.autograph.control_status_ctx())
    --> 725     matches = ag_fn(y_true, y_pred, **self._fn_kwargs)
        726     return super(MeanMetricWrapper, self).update_state(
        727         matches, sample_weight=sample_weight)
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
        694       try:
        695         with conversion_ctx:
    --> 696           return converted_call(f, args, kwargs, options=options)
        697       except Exception as e:  # pylint:disable=broad-except
        698         if hasattr(e, 'ag_error_metadata'):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in converted_call(f, args, kwargs, caller_fn_scope, options)
        381 
        382   if not options.user_requested and conversion.is_allowlisted(f):
    --> 383     return _call_unconverted(f, args, kwargs, options)
        384 
        385   # internal_convert_user_code is for example turned off when issuing a dynamic
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in _call_unconverted(f, args, kwargs, options, update_cache)
        462 
        463   if kwargs is not None:
    --> 464     return f(*args, **kwargs)
        465   return f(*args)
        466 
    
    /usr/local/lib/python3.7/dist-packages/keras/losses.py in __call__(self, y_true, y_pred, sample_weight)
        141       losses = call_fn(y_true, y_pred)
        142       return losses_utils.compute_weighted_loss(
    --> 143           losses, sample_weight, reduction=self._get_reduction())
        144 
        145   @classmethod
    
    /usr/local/lib/python3.7/dist-packages/keras/losses.py in _get_reduction(self)
        182          self.reduction == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE)):
        183       raise ValueError(
    --> 184           'Please use `tf.keras.losses.Reduction.SUM` or '
        185           '`tf.keras.losses.Reduction.NONE` for loss reduction when losses are '
        186           'used with `tf.distribute.Strategy` outside of the built-in training '
    
    ValueError: Please use `tf.keras.losses.Reduction.SUM` or `tf.keras.losses.Reduction.NONE` for loss reduction when losses are used with `tf.distribute.Strategy` outside of the built-in training loops. You can implement `tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE` using global batch size like:
    
    with strategy.scope():
        loss_obj = tf.keras.losses.CategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
        loss = tf.reduce_sum(loss_obj(labels, predictions)) * (1. / global_batch_size)
    Please see https://www.tensorflow.org/tutorials/distribute/custom_training for more details.
    

    it seems that support of loss reduction has not been implemented. It may be a little tricky, but it would be nice if you can add this enhancement.

    Thank you!

    enhancement 
    opened by tingjhenjiang 3
  • Importance weights.

    Importance weights.

    I had a question about the importance weights code below that was in one of the tutorial docs.

    Importance weights customization
    A quick example to show how the importance weights can be customized.
    model = create_model(num_classes = NUM_CLASSES)
    model.summary()
    # We have num_classes - 1 outputs (cumulative logits), so there are 9 elements
    # in the importance vector to customize.
    importance_weights = [1., 1., 0.5, 0.5, 0.5, 1., 1., 0.1, 0.1]
    loss_fn = condor.SparseCondorOrdinalCrossEntropy(importance_weights = importance_weights)
    model.compile(tf.keras.optimizers.Adam(lr = learning_rate), loss = loss_fn)
    history = model.fit(dataset, epochs = num_epochs)
    

    My problem:

    I have 5 classes, with underrepresentation of say the first and lass class. I want to use weights to assign higher importance to the underrepresented classes. In a dense layer with n(classes) == n(output_layers), the vector would look like.

    [1,0.5,0.5,0.5,1]

    With the CONDOR, using num_classes - 1 output layers, is it still possible to assign higher weights to underrepresented classes?

    I don't understand how to relate the N-1 output layers weights to the original weights where n(classes) == n(output_layers).

    Any feedback is appreciated.

    opened by jake-foxy 2
  • activation function at last layer

    activation function at last layer

    Hello, I've a dataset in which the labels are like (0,1,2,3). It means the number of classes in Y is 4.

    Method 1:

    Using the condor.CondorOrdinalEncoder(nclasses=4).fit_transform(labels) to transform labels to an array in shape (n, 3). [ [0,0,1],  [1,0,0] ] as model prediction objects. The last layer is tf.keras.layers.Dense(units=4-1), according to the readme, however by this design the default activation function of the last layer would be None/Linear( f(x) = x), and the output of the model would be simple logits. Should I keep the model outputs simple logits(no activation function)?

    Method 2:

    If I use tf.keras.layers.Dense(units=4-2, activation=condor.ordinal_softmax) as the last layer together with label data in shape (n, 3), would that be fine? (the condor.ordinal_softmax function would increase the number of dimension)

    Method 3: Or I should use tf.keras.layers.Dense(units=4-1, activation=condor.ordinal_softmax) as the last layer together with label data in shape (n, 4)?

    Which method is better? Thank you!

    opened by tingjhenjiang 2
  • Update labelencoder.py

    Update labelencoder.py

    When fitting data with nclass=0:

    1. self.feature_names_in_ would lose its functionality(the previous commit).
    2. Also, using sklearn.compose.ColumnTransformer to transform multiple columns with CondorOrdinalEncoder at a time would cause self.nclass changing in every transformation and thus the transformation would fail, and therefore it is necessary to differentiate.
    opened by tingjhenjiang 1
  • Upadate labelencoder.py add get_feature_names_out method

    Upadate labelencoder.py add get_feature_names_out method

    When I try to integrate sklearn.compose.ColumnTransformer, sklearn.pipeline with condor encoder, I find it difficult and errors happen due to lack of support. Therefore I add the support of get_feature_names_out method, which complies with the structure of sklearn.

    opened by tingjhenjiang 1
Releases(v1.0.1)
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022