Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Overview

Learning to Adapt Structured Output Space for Semantic Segmentation

Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge.

Contact: Yi-Hsuan Tsai (wasidennis at gmail dot com) and Wei-Chih Hung (whung8 at ucmerced dot edu)

Paper

Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).

Please cite our paper if you find it useful for your research.

@inproceedings{Tsai_adaptseg_2018,
  author = {Y.-H. Tsai and W.-C. Hung and S. Schulter and K. Sohn and M.-H. Yang and M. Chandraker},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Learning to Adapt Structured Output Space for Semantic Segmentation},
  year = {2018}
}

Example Results

Quantitative Reuslts

Installation

  • Install PyTorch from http://pytorch.org with Python 2 and CUDA 8.0

  • NEW Add the LS-GAN objective to improve the performance

    • Usage: add --gan LS option during training (see below for more details)
  • PyTorch 0.4 with Python 3 and CUDA 8.0

    • Usage: replace the training and evaluation codes with the ones in the pytorch_0.4 folder
    • Update: tensorboard is provided by adding --tensorboard in the command
    • Note: the single-level model works as expected, while the multi-level model requires smaller weights, e.g., --lambda-adv-target1 0.00005 --lambda-adv-target2 0.0005. We will investigate this issue soon.
  • Clone this repo

git clone https://github.com/wasidennis/AdaptSegNet
cd AdaptSegNet

Dataset

  • Download the GTA5 Dataset as the source domain, and put it in the data/GTA5 folder

  • Download the Cityscapes Dataset as the target domain, and put it in the data/Cityscapes folder

Pre-trained Models

  • Please find our-pretrained models using ResNet-101 on three benchmark settings here

  • They include baselines (without adaptation and with feature adaptation) and our models (single-level and multi-level)

Testing

  • NEW Update results using LS-GAN and using Synscapes as the source domain

  • Download the pre-trained multi-level GTA5-to-Cityscapes model and put it in the model folder

  • Test the model and results will be saved in the result folder

python evaluate_cityscapes.py --restore-from ./model/GTA2Cityscapes_multi-ed35151c.pth
python evaluate_cityscapes.py --model DeeplabVGG --restore-from ./model/GTA2Cityscapes_vgg-ac4ac9f6.pth
python compute_iou.py ./data/Cityscapes/data/gtFine/val result/cityscapes

Training Examples

  • NEW Train the GTA5-to-Cityscapes model (single-level with LS-GAN)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single_lsgan \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.01 \
                                     --gan LS
  • Train the GTA5-to-Cityscapes model (multi-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_multi \
                                     --lambda-seg 0.1 \
                                     --lambda-adv-target1 0.0002 --lambda-adv-target2 0.001
  • Train the GTA5-to-Cityscapes model (single-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.001

Related Implementation and Dataset

  • Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker. Domain Adaptation for Structured Output via Discriminative Patch Representations. In ICCV, 2019. (Oral) [paper] [project] [Implementation Guidance]
  • W.-C. Hung, Y.-H Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang. Adversarial Learning for Semi-supervised Semantic Segmentation. In BMVC, 2018. [paper] [code]
  • Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun. No More Discrimination: Cross City Adaptation of Road Scene Segmenters. In ICCV 2017. [paper] [project]

Acknowledgment

This code is heavily borrowed from Pytorch-Deeplab.

Note

The model and code are available for non-commercial research purposes only.

  • 10/2019: update performance and training/evaluation codes for using LS-GAN and Synscapes (especially thanks to Yan-Ting Liu for helping experiments)
  • 01/2019: upate the training code for PyTorch 0.4
  • 07/23/2018: update evaluation code for PyTorch 0.4
  • 06/04/2018: update pretrained VGG-16 model
  • 02/2018: code released
Owner
Yi-Hsuan Tsai
Yi-Hsuan Tsai
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022