Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Related tags

Deep LearningVoxSeT
Overview

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper]

Authors: Chenhang He, Ruihuang Li, Shuai Li, Lei Zhang.

This project is built on OpenPCDet.

Updates

2022-04-09: Add waymo config and multi-frame input.

The performance of VoxSeT (single-stage, single-frame) on Waymo valdation split are as follows.

% Training Car AP/APH Ped AP/APH Cyc AP/APH Log file
Level 1 20% 72.10/71.59 77.94/69.58 69.88/68.54 Download
Level 2 20% 63.62/63.17 70.20/62.51 67.31/66.02
Level 1 100% 74.50/74.03 80.03/72.42 71.56/70.29 Download
Level 2 100% 65.99/65.56 72.45/65.39 68.95/67.73

Introduction

drawing

Transformer has demonstrated promising performance in many 2D vision tasks. However, it is cumbersome to compute the self-attention on large-scale point cloud data because point cloud is a long sequence and unevenly distributed in 3D space. To solve this issue, existing methods usually compute self-attention locally by grouping the points into clusters of the same size, or perform convolutional self-attention on a discretized representation. However, the former results in stochastic point dropout, while the latter typically has narrow attention fields. In this paper, we propose a novel voxel-based architecture, namely Voxel Set Transformer (VoxSeT), to detect 3D objects from point clouds by means of set-to-set translation. VoxSeT is built upon a voxel-based set attention (VSA) module, which reduces the self-attention in each voxel by two cross attentions and models features in a hidden space induced by a group of latent codes. With the VSA module, VoxSeT can manage voxelized point clusters with arbitrary size in a wide range, and process them in parallel with linear complexity. The proposed VoxSeT integrates the high performance of transformer with the efficiency of voxel-based model, which can be used as a good alternative to the convolutional and point-based backbones.

1. Recommended Environment

  • Linux (tested on Ubuntu 16.04)
  • Python 3.7
  • PyTorch 1.9 or higher (tested on PyTorch 1.10.1)
  • CUDA 9.0 or higher (tested on CUDA 10.2)

2. Set the Environment

pip install -r requirement.txt
python setup.py build_ext --inplace 

The torch_scatter package is required

3. Data Preparation

# Download KITTI and organize it into the following form:
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2

# Generatedata infos:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

4. Pretrain model

You can download the pretrain model here and the log file here.

The performance (using 11 recall poisitions) on KITTI validation set is as follows:

Car  [email protected], 0.70, 0.70:
bev  AP:90.1572, 88.0972, 86.8397
3d   AP:88.8694, 78.7660, 77.5758

Pedestrian [email protected], 0.50, 0.50:
bev  AP:63.1125, 58.5591, 55.1318
3d   AP:60.2515, 55.5535, 50.1888

Cyclist [email protected], 0.50, 0.50:
bev  AP:85.6768, 71.9008, 67.1551
3d   AP:85.4238, 70.2774, 64.9804

The runtime is about 33 ms per sample.

5. Train

  • Train with a single GPU
python train.py --cfg_file tools/cfgs/kitti_models/voxset.yaml
  • Train with multiple GPUs
cd VoxSeT/tools
bash scripts/dist_train.sh --cfg_file ./cfgs/kitti_models/voxset.yaml

6. Test with a pretrained model

cd VoxSeT/tools
python test.py --cfg_file --cfg_file ./cfgs/kitti_models/voxset.yaml --ckpt ${CKPT_FILE}

Citation

@inproceedings{he2022voxset,
  title={Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds},
  author={Chenhang He, Ruihuang Li, Shuai Li and Lei Zhang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}
Owner
Billy HE
PhD candidate of The Hong Kong Polytechnic University
Billy HE
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Nicholas Lee 3 Jan 09, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022