Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

Overview

NeonatalSeizureDetection

Description

Link: https://arxiv.org/abs/2111.15569

Citation:

@misc{nagarajan2021scalable,
      title={Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices}, 
      author={Vishal Nagarajan and Ashwini Muralidharan and Deekshitha Sriraman and Pravin Kumar S},
      year={2021},
      eprint={2111.15569},
      archivePrefix={arXiv},
      primaryClass={eess.SP}
}

This repository contains code for the implementation of the paper titled "Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices", which has been accepted at the AISP '22: 2nd International Conference on Artificial Intelligence and Signal Processing. A typical neonatal seizure and non-seizure event is illustrated below. Continuous EEG signals are filtered and segmented with varying window lengths of 1, 2, 4, 8, and 16 seconds. The data used here for experimentation can be downloaded from here.

Seizure Event Non-seizure Event

This end-to-end architecture receives raw EEG signal, processes it and classifies it as ictal or normal activity. After preprocessing, the signal is passed to a feature extraction engine that extracts the necessary feature set Fd. It is followed by a scalable machine learning (ML) classifier that performs prediction as illustrated in the figure below.

Pipeline Architecture

Files description

  1. dataprocessing.ipynb -> Notebook for converting edf files to csv files.
  2. filtering.ipynb -> Notebook for filtering the input EEG signals in order to observe the specific frequencies.
  3. segmentation.ipynb -> Notebook for segmenting the input into appropriate windows lengths and overlaps.
  4. features_final.ipynb -> Notebook for extracting relevant features from segmented data.
  5. protoNN_example.py -> Script used for running protoNN model using .npy files.
  6. inference_time.py -> Script used to record and report inference times.
  7. knn.ipynb -> Notebook used to compare results of ProtoNN and kNN models.

Dependencies

If you are using conda, it is recommended to switch to a new environment.

    $ conda create -n myenv
    $ conda activate myenv
    $ conda install pip
    $ pip install -r requirements.txt

If you wish to use virtual environment,

    $ pip install virtualenv
    $ virtualenv myenv
    $ source myenv/bin/activate
    $ pip install -r requirements.txt

Usage

  1. Clone the ProtoNN package from here, antropy package from here, and envelope_derivative_operator package from here.

  2. Replace the protoNN_example.py with protoNN_example.py.

  3. Prepare the train and test data .npy files and save it in a DATA_DIR directory.

  4. Execute the following command in terminal after preparing the data files. Create an output directory should you need to save the weights of the ProtoNN object as OUT_DIR.

        $ python protoNN_example.py -d DATA_DIR -e 500 -o OUT_DIR
    

Authors

Vishal Nagarajan

Ashwini Muralidharan

Deekshitha Sriraman

Acknowledgements

ProtoNN built using EdgeML provided by Microsoft. Features extracted using antropy and otoolej repositories.

References

[1] Nathan Stevenson, Karoliina Tapani, Leena Lauronen, & Sampsa Vanhatalo. (2018). A dataset of neonatal EEG recordings with seizures annotations [Data set]. Zenodo. https://doi.org/10.5281/zenodo.1280684.

[2] Gupta, Ankit et al. "ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices." Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.

Owner
Vishal Nagarajan
Undergraduate ML Research Assistant at Solarillion Foundation B.E. (CSE) @ SSNCE
Vishal Nagarajan
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022