Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

Overview

NeonatalSeizureDetection

Description

Link: https://arxiv.org/abs/2111.15569

Citation:

@misc{nagarajan2021scalable,
      title={Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices}, 
      author={Vishal Nagarajan and Ashwini Muralidharan and Deekshitha Sriraman and Pravin Kumar S},
      year={2021},
      eprint={2111.15569},
      archivePrefix={arXiv},
      primaryClass={eess.SP}
}

This repository contains code for the implementation of the paper titled "Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices", which has been accepted at the AISP '22: 2nd International Conference on Artificial Intelligence and Signal Processing. A typical neonatal seizure and non-seizure event is illustrated below. Continuous EEG signals are filtered and segmented with varying window lengths of 1, 2, 4, 8, and 16 seconds. The data used here for experimentation can be downloaded from here.

Seizure Event Non-seizure Event

This end-to-end architecture receives raw EEG signal, processes it and classifies it as ictal or normal activity. After preprocessing, the signal is passed to a feature extraction engine that extracts the necessary feature set Fd. It is followed by a scalable machine learning (ML) classifier that performs prediction as illustrated in the figure below.

Pipeline Architecture

Files description

  1. dataprocessing.ipynb -> Notebook for converting edf files to csv files.
  2. filtering.ipynb -> Notebook for filtering the input EEG signals in order to observe the specific frequencies.
  3. segmentation.ipynb -> Notebook for segmenting the input into appropriate windows lengths and overlaps.
  4. features_final.ipynb -> Notebook for extracting relevant features from segmented data.
  5. protoNN_example.py -> Script used for running protoNN model using .npy files.
  6. inference_time.py -> Script used to record and report inference times.
  7. knn.ipynb -> Notebook used to compare results of ProtoNN and kNN models.

Dependencies

If you are using conda, it is recommended to switch to a new environment.

    $ conda create -n myenv
    $ conda activate myenv
    $ conda install pip
    $ pip install -r requirements.txt

If you wish to use virtual environment,

    $ pip install virtualenv
    $ virtualenv myenv
    $ source myenv/bin/activate
    $ pip install -r requirements.txt

Usage

  1. Clone the ProtoNN package from here, antropy package from here, and envelope_derivative_operator package from here.

  2. Replace the protoNN_example.py with protoNN_example.py.

  3. Prepare the train and test data .npy files and save it in a DATA_DIR directory.

  4. Execute the following command in terminal after preparing the data files. Create an output directory should you need to save the weights of the ProtoNN object as OUT_DIR.

        $ python protoNN_example.py -d DATA_DIR -e 500 -o OUT_DIR
    

Authors

Vishal Nagarajan

Ashwini Muralidharan

Deekshitha Sriraman

Acknowledgements

ProtoNN built using EdgeML provided by Microsoft. Features extracted using antropy and otoolej repositories.

References

[1] Nathan Stevenson, Karoliina Tapani, Leena Lauronen, & Sampsa Vanhatalo. (2018). A dataset of neonatal EEG recordings with seizures annotations [Data set]. Zenodo. https://doi.org/10.5281/zenodo.1280684.

[2] Gupta, Ankit et al. "ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices." Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.

Owner
Vishal Nagarajan
Undergraduate ML Research Assistant at Solarillion Foundation B.E. (CSE) @ SSNCE
Vishal Nagarajan
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022