Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

Overview

NeonatalSeizureDetection

Description

Link: https://arxiv.org/abs/2111.15569

Citation:

@misc{nagarajan2021scalable,
      title={Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices}, 
      author={Vishal Nagarajan and Ashwini Muralidharan and Deekshitha Sriraman and Pravin Kumar S},
      year={2021},
      eprint={2111.15569},
      archivePrefix={arXiv},
      primaryClass={eess.SP}
}

This repository contains code for the implementation of the paper titled "Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices", which has been accepted at the AISP '22: 2nd International Conference on Artificial Intelligence and Signal Processing. A typical neonatal seizure and non-seizure event is illustrated below. Continuous EEG signals are filtered and segmented with varying window lengths of 1, 2, 4, 8, and 16 seconds. The data used here for experimentation can be downloaded from here.

Seizure Event Non-seizure Event

This end-to-end architecture receives raw EEG signal, processes it and classifies it as ictal or normal activity. After preprocessing, the signal is passed to a feature extraction engine that extracts the necessary feature set Fd. It is followed by a scalable machine learning (ML) classifier that performs prediction as illustrated in the figure below.

Pipeline Architecture

Files description

  1. dataprocessing.ipynb -> Notebook for converting edf files to csv files.
  2. filtering.ipynb -> Notebook for filtering the input EEG signals in order to observe the specific frequencies.
  3. segmentation.ipynb -> Notebook for segmenting the input into appropriate windows lengths and overlaps.
  4. features_final.ipynb -> Notebook for extracting relevant features from segmented data.
  5. protoNN_example.py -> Script used for running protoNN model using .npy files.
  6. inference_time.py -> Script used to record and report inference times.
  7. knn.ipynb -> Notebook used to compare results of ProtoNN and kNN models.

Dependencies

If you are using conda, it is recommended to switch to a new environment.

    $ conda create -n myenv
    $ conda activate myenv
    $ conda install pip
    $ pip install -r requirements.txt

If you wish to use virtual environment,

    $ pip install virtualenv
    $ virtualenv myenv
    $ source myenv/bin/activate
    $ pip install -r requirements.txt

Usage

  1. Clone the ProtoNN package from here, antropy package from here, and envelope_derivative_operator package from here.

  2. Replace the protoNN_example.py with protoNN_example.py.

  3. Prepare the train and test data .npy files and save it in a DATA_DIR directory.

  4. Execute the following command in terminal after preparing the data files. Create an output directory should you need to save the weights of the ProtoNN object as OUT_DIR.

        $ python protoNN_example.py -d DATA_DIR -e 500 -o OUT_DIR
    

Authors

Vishal Nagarajan

Ashwini Muralidharan

Deekshitha Sriraman

Acknowledgements

ProtoNN built using EdgeML provided by Microsoft. Features extracted using antropy and otoolej repositories.

References

[1] Nathan Stevenson, Karoliina Tapani, Leena Lauronen, & Sampsa Vanhatalo. (2018). A dataset of neonatal EEG recordings with seizures annotations [Data set]. Zenodo. https://doi.org/10.5281/zenodo.1280684.

[2] Gupta, Ankit et al. "ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices." Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.

Owner
Vishal Nagarajan
Undergraduate ML Research Assistant at Solarillion Foundation B.E. (CSE) @ SSNCE
Vishal Nagarajan
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022