PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

Overview

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

This is the official repository of PRIME, the data agumentation method introduced in the paper: "PRIME: A Few Primitives Can Boost Robustness to Common Corruptions". PRIME is a generic, plug-n-play data augmentation scheme that consists of simple families of max-entropy image transformations for conferring robustness to common corruptions. PRIME leads to significant improvements in corruption robustness on multiple benchmarks.

Pre-trained models

We provide different models trained with PRIME on CIFAR-10/100 and ImageNet datasets. You can download them from here.

Setup

This code has been tested with Python 3.8.5 and PyTorch 1.9.1. To install required dependencies run:

$ pip install -r requirements.txt

For corruption robustness evaluation, download and extract the CIFAR-10-C, CIFAR-100-C and ImageNet-C datasets from here.

Usage

We provide a script train.py for PRIME training on CIFAR-10/100, ImageNet-100 and ImageNet. For example, to train a ResNet-50 network on ImageNet with PRIME, run:

$ python -u train.py --config=config/imagenet_cfg.py \
    --config.save_dir=<save_dir> \
    --config.data_dir=<data_dir> \
    --config.cc_dir=<common_corr_dir> \
    --config.use_prime=True

Detailed configuration options can be found in config.

Results

Results on ImageNet/ImageNet-100 with a ResNet-50/ResNet-18 (†: without JSD loss)

Dataset Method   Clean (↑) CC Acc (↑)    mCE (↓)
ImageNet Standard 76.1 38.1 76.1
ImageNet AugMix 77.5 48.3 65.3
ImageNet DeepAugment 76.7 52.6 60.4
ImageNet PRIME† 77.0 55.0 57.5
ImageNet-100 Standard 88.0 49.7 100
ImageNet-100 AugMix 88.7 60.7 79.1
ImageNet-100 DeepAugment 86.3 67.7 68.1
ImageNet-100 PRIME 85.9 71.6 61.0

Results on CIFAR-10/100 with a ResNet-18

Dataset    Method            Clean (↑) CC Acc (↑)    mCE (↓)
CIFAR-10 Standard 95.0 74.0 24.0
CIFAR-10 AugMix 95.2 88.6 11.4
CIFAR-10 PRIME 93.1 89.0 11.0
CIFAR-100 Standard 76.7 51.9 48.1
CIFAR-100 AugMix 78.2 64.9 35.1
CIFAR-100 PRIME 77.6 68.3 31.7

Citing this work

@article{PRIME2021,
    title = {PRIME: A Few Primitives Can Boost Robustness to Common Corruptions}, 
    author = {Apostolos Modas and Rahul Rade and Guillermo {Ortiz-Jim\'enez} and Seyed-Mohsen {Moosavi-Dezfooli} and Pascal Frossard},
    year = {2021},
    journal = {arXiv preprint arXiv:2112.13547}
}
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023