CNN designed for pansharpening

Related tags

Deep LearningPBSNet
Overview

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING

This repository contains main code for the paper PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING, contributed by Shishi Xiao, Cheng Jin, Tian-Jing Zhang, Ran Ran, and Liang-Jian Deng. All rights reserved by authors.

Homepage:

https://serendipitysx.github.io/

https://chengjin-git.github.io/

https://liangjiandeng.github.io/

Introduction

In this paper, we design a progressive, band-separated convolutional network architecture for discriminatively learning the features and relation among spectral bands, aiming to address the problem mentioned before. More specififically, the proposed architecture mainly consists of three aspects. First, to accurately preserve the spectral peculiarities, we divide the multispectral input image in terms of its bands into several groups. Second, our original panchromatic and multispectral inputs are fifiltered by a high-pass operation to further yield more spatial details. Third, we use a spectral fusion module (SFM) for each group and associate them to progressively assemble the whole architecture. It is worth mentioning that the architecture could be integrated into any other competitive CNNs to improve the performance.

Dependencies and Installation

  • Python 3.8 (Recommend to use Anaconda)
  • PyTorch > 1.1
  • NVIDIA GPU + CUDA
  • Python packages: pip install numpy scipy h5py
  • TensorBoard

Dataset Preparation

The datasets used in this paper is WorldView-3 (can be downloaded here), QuickBird (can be downloaded here) and GaoFen-2 (can be downloaded here). Due to the copyright of dataset, we can not upload the datasets, you may download the data and simulate them according to the paper.

PBSNet Architecture

Results

Citation

@INPROCEEDINGS{psbnnet,
  author={Xiao, Shi-Shi and Jin, Cheng and Zhang, Tian-Jing and Ran, Ran and Deng, Liang-Jian},
  booktitle={2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS}, 
  title={Progressive Band-Separated Convolutional Neural Network for Multispectral Pansharpening}, 
  year={2021},
  volume={},
  number={},
  pages={4464-4467},
  doi={10.1109/IGARSS47720.2021.9554024}}

Contact

We are glad to hear from you. If you have any questions, please feel free to contact or open issues on this repository.

Owner
SerendipitysX
SerendipitysX
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022