Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

Overview

Deep Learning with PyTorch Step-by-Step

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Each notebook contains all the code shown in its corresponding chapter, and you should be able to run its cells in sequence to get the same outputs as shown in the book. I strongly believe that being able to reproduce the results brings confidence to the reader.

There are three options for you to run the Jupyter notebooks:

Google Colab

You can easily load the notebooks directly from GitHub using Colab and run them using a GPU provided by Google. You need to be logged in a Google Account of your own.

You can go through the chapters already using the links below:

Part I - Fundamentals

Part II - Computer Vision

Part III - Sequences

Part IV - Natural Language Processing

Binder

You can also load the notebooks directly from GitHub using Binder, but the process is slightly different. It will create an environment on the cloud and allow you to access Jupyter's Home Page in your browser, listing all available notebooks, just like in your own computer.

If you make changes to the notebooks, make sure to download them, since Binder does not keep the changes once you close it.

You can start your environment on the cloud right now using the button below:

Binder

Local Installation

This option will give you more flexibility, but it will require more effort to set up. I encourage you to try setting up your own environment. It may seem daunting at first, but you can surely accomplish it following seven easy steps:

1 - Anaconda

If you don’t have Anaconda’s Individual Edition installed yet, that would be a good time to do it - it is a very handy way to start - since it contains most of the Python libraries a data scientist will ever need to develop and train models.

Please follow the installation instructions for your OS:

Make sure you choose Python 3.X version since Python 2 was discontinued in January 2020.

2 - Conda (Virtual) Environments

Virtual environments are a convenient way to isolate Python installations associated with different projects.

First, you need to choose a name for your environment :-) Let’s call ours pytorchbook (or anything else you find easier to remember). Then, you need to open a terminal (in Ubuntu) or Anaconda Prompt (in Windows or macOS) and type the following command:

conda create -n pytorchbook anaconda

The command above creates a conda environment named pytorchbook and includes all anaconda packages in it (time to get a coffee, it will take a while...). If you want to learn more about creating and using conda environments, please check Anaconda’s Managing Environments user guide.

Did it finish creating the environment? Good! It is time to activate it, meaning, making that Python installation the one to be used now. In the same terminal (or Anaconda Prompt), just type:

conda activate pytorchbook

Your prompt should look like this (if you’re using Linux)...

(pytorchbook)$

or like this (if you’re using Windows):

(pytorchbook)C:\>

Done! You are using a brand new conda environment now. You’ll need to activate it every time you open a new terminal or, if you’re a Windows or macOS user, you can open the corresponding Anaconda Prompt (it will show up as Anaconda Prompt (pytorchbook), in our case), which will have it activated from start.

IMPORTANT: From now on, I am assuming you’ll activate the pytorchbook environment every time you open a terminal / Anaconda Prompt. Further installation steps must be executed inside the environment.

3 - PyTorch

It is time to install the star of the show :-) We can go straight to the Start Locally section of its website and it will automatically select the options that best suit your local environment and it will show you the command to run.

Your choices should look like:

  • PyTorch Build: "Stable"
  • Your OS: your operating system
  • Package: "Conda"
  • Language: "Python"
  • CUDA: "None" if you don't have a GPU, or the latest version (e.g. "10.1"), if you have a GPU.

The installation command will be shown right below your choices, so you can copy it. If you have a Windows computer and no GPU, you'd have to run the following command in your Anaconda Prompt (pytorchbook):

(pytorchbook) C:\> conda install pytorch torchvision cpuonly -c pytorch

4 - TensorBoard

TensorBoard is a powerful tool and we can use it even if we are developing models in PyTorch. Luckily, you don’t need to install the whole TensorFlow to get it, you can easily install TensorBoard alone using conda. You just need to run this command in your terminal or Anaconda Prompt (again, after activating the environment):

(pytorchbook)C:\> conda install -c conda-forge tensorboard

5 - GraphViz and TorchViz (optional)

This step is optional, mostly because the installation of GraphViz can be challenging sometimes (especially on Windows). If, for any reason, you do not succeed in installing it correctly, or if you decide to skip this installation step, you will still be able to execute the code in this book (except for a couple of cells that generate images of a model’s structure in the Dynamic Computation Graph section of Chapter 1).

We need to install GraphViz to be able to use TorchViz, a neat package that allows us to visualize a model’s structure. Please check the installation instructions for your OS.

If you are using Windows, please use the installer at GraphViz's Windows Package. You also need to add GraphViz to the PATH (environment variable) in Windows. Most likely, you can find GraphViz executable file at C:\ProgramFiles(x86)\Graphviz2.38\bin. Once you found it, you need to set or change the PATH accordingly, adding GraphViz's location to it. For more details on how to do that, please refer to How to Add to Windows PATH Environment Variable.

For additional information, you can also check the How to Install Graphviz Software guide.

If you installed GraphViz successfully, you can install the torchviz package. This package is not part of Anaconda Distribution Repository and is only available at PyPI , the Python Package Index, so we need to pip install it.

Once again, open a terminal or Anaconda Prompt and run this command (just once more: after activating the environment):

(pytorchbook)C:\> pip install torchviz

6 - Git

It is way beyond the scope of this guide to introduce you to version control and its most popular tool: git. If you are familiar with it already, great, you can skip this section altogether!

Otherwise, I’d recommend you to learn more about it, it will definitely be useful for you later down the line. In the meantime, I will show you the bare minimum, so you can use git to clone this repository containing all code used in this book - so you have your own, local copy of it and can modify and experiment with it as you please.

First, you need to install it. So, head to its downloads page and follow instructions for your OS. Once installation is complete, please open a new terminal or Anaconda Prompt (it's OK to close the previous one). In the new terminal or Anaconda Prompt, you should be able to run git commands. To clone this repository, you only need to run:

(pytorchbook)C:\> git clone https://github.com/dvgodoy/PyTorchStepByStep.git

The command above will create a PyTorchStepByStep folder which contains a local copy of everything available on this GitHub’s repository.

7 - Jupyter

After cloning the repository, navigate to the PyTorchStepByStep and, once inside it, you only need to start Jupyter on your terminal or Anaconda Prompt:

(pytorchbook)C:\> jupyter notebook

This will open your browser up and you will see Jupyter's Home Page containing this repository's notebooks and code.

Congratulations! You are ready to go through the chapters' notebooks!

Owner
Daniel Voigt Godoy
Data scientist, developer, teacher and writer. Author of "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide".
Daniel Voigt Godoy
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022