Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

Overview

Deep Learning with PyTorch Step-by-Step

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Each notebook contains all the code shown in its corresponding chapter, and you should be able to run its cells in sequence to get the same outputs as shown in the book. I strongly believe that being able to reproduce the results brings confidence to the reader.

There are three options for you to run the Jupyter notebooks:

Google Colab

You can easily load the notebooks directly from GitHub using Colab and run them using a GPU provided by Google. You need to be logged in a Google Account of your own.

You can go through the chapters already using the links below:

Part I - Fundamentals

Part II - Computer Vision

Part III - Sequences

Part IV - Natural Language Processing

Binder

You can also load the notebooks directly from GitHub using Binder, but the process is slightly different. It will create an environment on the cloud and allow you to access Jupyter's Home Page in your browser, listing all available notebooks, just like in your own computer.

If you make changes to the notebooks, make sure to download them, since Binder does not keep the changes once you close it.

You can start your environment on the cloud right now using the button below:

Binder

Local Installation

This option will give you more flexibility, but it will require more effort to set up. I encourage you to try setting up your own environment. It may seem daunting at first, but you can surely accomplish it following seven easy steps:

1 - Anaconda

If you don’t have Anaconda’s Individual Edition installed yet, that would be a good time to do it - it is a very handy way to start - since it contains most of the Python libraries a data scientist will ever need to develop and train models.

Please follow the installation instructions for your OS:

Make sure you choose Python 3.X version since Python 2 was discontinued in January 2020.

2 - Conda (Virtual) Environments

Virtual environments are a convenient way to isolate Python installations associated with different projects.

First, you need to choose a name for your environment :-) Let’s call ours pytorchbook (or anything else you find easier to remember). Then, you need to open a terminal (in Ubuntu) or Anaconda Prompt (in Windows or macOS) and type the following command:

conda create -n pytorchbook anaconda

The command above creates a conda environment named pytorchbook and includes all anaconda packages in it (time to get a coffee, it will take a while...). If you want to learn more about creating and using conda environments, please check Anaconda’s Managing Environments user guide.

Did it finish creating the environment? Good! It is time to activate it, meaning, making that Python installation the one to be used now. In the same terminal (or Anaconda Prompt), just type:

conda activate pytorchbook

Your prompt should look like this (if you’re using Linux)...

(pytorchbook)$

or like this (if you’re using Windows):

(pytorchbook)C:\>

Done! You are using a brand new conda environment now. You’ll need to activate it every time you open a new terminal or, if you’re a Windows or macOS user, you can open the corresponding Anaconda Prompt (it will show up as Anaconda Prompt (pytorchbook), in our case), which will have it activated from start.

IMPORTANT: From now on, I am assuming you’ll activate the pytorchbook environment every time you open a terminal / Anaconda Prompt. Further installation steps must be executed inside the environment.

3 - PyTorch

It is time to install the star of the show :-) We can go straight to the Start Locally section of its website and it will automatically select the options that best suit your local environment and it will show you the command to run.

Your choices should look like:

  • PyTorch Build: "Stable"
  • Your OS: your operating system
  • Package: "Conda"
  • Language: "Python"
  • CUDA: "None" if you don't have a GPU, or the latest version (e.g. "10.1"), if you have a GPU.

The installation command will be shown right below your choices, so you can copy it. If you have a Windows computer and no GPU, you'd have to run the following command in your Anaconda Prompt (pytorchbook):

(pytorchbook) C:\> conda install pytorch torchvision cpuonly -c pytorch

4 - TensorBoard

TensorBoard is a powerful tool and we can use it even if we are developing models in PyTorch. Luckily, you don’t need to install the whole TensorFlow to get it, you can easily install TensorBoard alone using conda. You just need to run this command in your terminal or Anaconda Prompt (again, after activating the environment):

(pytorchbook)C:\> conda install -c conda-forge tensorboard

5 - GraphViz and TorchViz (optional)

This step is optional, mostly because the installation of GraphViz can be challenging sometimes (especially on Windows). If, for any reason, you do not succeed in installing it correctly, or if you decide to skip this installation step, you will still be able to execute the code in this book (except for a couple of cells that generate images of a model’s structure in the Dynamic Computation Graph section of Chapter 1).

We need to install GraphViz to be able to use TorchViz, a neat package that allows us to visualize a model’s structure. Please check the installation instructions for your OS.

If you are using Windows, please use the installer at GraphViz's Windows Package. You also need to add GraphViz to the PATH (environment variable) in Windows. Most likely, you can find GraphViz executable file at C:\ProgramFiles(x86)\Graphviz2.38\bin. Once you found it, you need to set or change the PATH accordingly, adding GraphViz's location to it. For more details on how to do that, please refer to How to Add to Windows PATH Environment Variable.

For additional information, you can also check the How to Install Graphviz Software guide.

If you installed GraphViz successfully, you can install the torchviz package. This package is not part of Anaconda Distribution Repository and is only available at PyPI , the Python Package Index, so we need to pip install it.

Once again, open a terminal or Anaconda Prompt and run this command (just once more: after activating the environment):

(pytorchbook)C:\> pip install torchviz

6 - Git

It is way beyond the scope of this guide to introduce you to version control and its most popular tool: git. If you are familiar with it already, great, you can skip this section altogether!

Otherwise, I’d recommend you to learn more about it, it will definitely be useful for you later down the line. In the meantime, I will show you the bare minimum, so you can use git to clone this repository containing all code used in this book - so you have your own, local copy of it and can modify and experiment with it as you please.

First, you need to install it. So, head to its downloads page and follow instructions for your OS. Once installation is complete, please open a new terminal or Anaconda Prompt (it's OK to close the previous one). In the new terminal or Anaconda Prompt, you should be able to run git commands. To clone this repository, you only need to run:

(pytorchbook)C:\> git clone https://github.com/dvgodoy/PyTorchStepByStep.git

The command above will create a PyTorchStepByStep folder which contains a local copy of everything available on this GitHub’s repository.

7 - Jupyter

After cloning the repository, navigate to the PyTorchStepByStep and, once inside it, you only need to start Jupyter on your terminal or Anaconda Prompt:

(pytorchbook)C:\> jupyter notebook

This will open your browser up and you will see Jupyter's Home Page containing this repository's notebooks and code.

Congratulations! You are ready to go through the chapters' notebooks!

Owner
Daniel Voigt Godoy
Data scientist, developer, teacher and writer. Author of "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide".
Daniel Voigt Godoy
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022