Genetic feature selection module for scikit-learn

Overview

sklearn-genetic

Genetic feature selection module for scikit-learn

Genetic algorithms mimic the process of natural selection to search for optimal values of a function.

Installation

The easiest way to install sklearn-genetic is using pip

pip install sklearn-genetic

or conda

conda install -c conda-forge sklearn-genetic

Requirements

  • Python >= 2.7
  • scikit-learn >= 0.20.3
  • DEAP >= 1.0.2

Example

from __future__ import print_function
import numpy as np
from sklearn import datasets, linear_model

from genetic_selection import GeneticSelectionCV


def main():
    iris = datasets.load_iris()

    # Some noisy data not correlated
    E = np.random.uniform(0, 0.1, size=(len(iris.data), 20))

    X = np.hstack((iris.data, E))
    y = iris.target

    estimator = linear_model.LogisticRegression(solver="liblinear", multi_class="ovr")

    selector = GeneticSelectionCV(estimator,
                                  cv=5,
                                  verbose=1,
                                  scoring="accuracy",
                                  max_features=5,
                                  n_population=50,
                                  crossover_proba=0.5,
                                  mutation_proba=0.2,
                                  n_generations=40,
                                  crossover_independent_proba=0.5,
                                  mutation_independent_proba=0.05,
                                  tournament_size=3,
                                  n_gen_no_change=10,
                                  caching=True,
                                  n_jobs=-1)
    selector = selector.fit(X, y)

    print(selector.support_)


if __name__ == "__main__":
    main()

Citing sklearn-genetic

Manuel Calzolari. (2020, October 12). manuel-calzolari/sklearn-genetic: sklearn-genetic 0.3.0 (Version 0.3.0). Zenodo. http://doi.org/10.5281/zenodo.4081754

BibTeX entry:

@software{manuel_calzolari_2020_4081754,
  author       = {Manuel Calzolari},
  title        = {{manuel-calzolari/sklearn-genetic: sklearn-genetic 
                   0.3.0}},
  month        = oct,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {0.3.0},
  doi          = {10.5281/zenodo.4081754},
  url          = {https://doi.org/10.5281/zenodo.4081754}
}

See also

  • shapicant, a feature selection package based on SHAP and target permutation, for pandas and Spark
Comments
  • scikit-learn 0.20.0 breaks sklearn-genetic 0.2

    scikit-learn 0.20.0 breaks sklearn-genetic 0.2

    Environment Versions

    1. OS Type: macOS Mojave (10.14.6)
    2. Python version: Python 3.6.8
    3. pip version: pip 18.1
    4. sklearn-genetic version: 0.2

    Steps to replicate

    1. I'm using pyenv and virtualenv to control Python environment, so for exact replication, pyenv shell 3.6.8 and mkvirtualenv sklearn-genetic-test to create fresh virtualenv.
    2. pip install sklearn-genetic==0.2
    3. In a Python shell, run from genetic_selection import GeneticSelectionCV

    Expected result

    Running from genetic_selection import GeneticSelectionCV works without error.

    Actual result

    (sklearn-genetic-test) ➜  sklearn-genetic-test python
    Python 3.6.8 (default, May 22 2020, 14:02:32)
    [GCC 4.2.1 Compatible Apple LLVM 11.0.0 (clang-1100.0.33.17)] on darwin
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from genetic_selection import GeneticSelectionCV
    /Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.metrics.scorer module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.
      warnings.warn(message, FutureWarning)
    /Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.feature_selection.base module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.feature_selection. Anything that cannot be imported from sklearn.feature_selection is now part of the private API.
      warnings.warn(message, FutureWarning)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/genetic_selection/__init__.py", line 32, in <module>
        from sklearn.externals.joblib import cpu_count
    ModuleNotFoundError: No module named 'sklearn.externals.joblib'
    >>> quit()
    (sklearn-genetic-test) ➜  sklearn-genetic-test pip -V
    pip 18.1 from /Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/pip (python 3.6)
    (sklearn-genetic-test) ➜  sklearn-genetic-test python -c "from genetic_selection import GeneticSelectionCV"
    /Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.metrics.scorer module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.
      warnings.warn(message, FutureWarning)
    /Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.feature_selection.base module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.feature_selection. Anything that cannot be imported from sklearn.feature_selection is now part of the private API.
      warnings.warn(message, FutureWarning)
    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "/Users/john/.virtualenvs/sklearn-genetic-test/lib/python3.6/site-packages/genetic_selection/__init__.py", line 32, in <module>
        from sklearn.externals.joblib import cpu_count
    ModuleNotFoundError: No module named 'sklearn.externals.joblib'
    
    opened by john-sandall 5
  • Using sklearn-genetic with neural networks

    Using sklearn-genetic with neural networks

    Hi @manuel-calzolari

    I am looking to use sklearn-genetic with a neural network, currently attempting to use with Keras NNs, although I am not necessarily tied to Keras.

    I get the following error:

    ValueError: Input 0 of layer sequential_2086 is incompatible with the layer: expected axis -1 of input shape to have value 180 but received input with shape (None, 118)

    I understand why this is occurring - my NN input layer is expecting 180 features. Is there some way I can provide the number of features that sklearn-genetic is attempting to train with?

    My KerasClassifier is defined as: estimator = KerasClassifier(lambda: create_nn_model(features=num_features), epochs=100) so I can dynamically supply this.

    Can you suggest how I might use sklearn-genetic to select features for use in a NN?

    Thanks for any help you can give.

    opened by chemckenna 3
  • Update to work with Python 3.8 and sklearn >0.20.0

    Update to work with Python 3.8 and sklearn >0.20.0

    I came across some issues/warnings when using Python 3.8 and more recent versions of sklearn when debugging solutions to https://github.com/manuel-calzolari/sklearn-genetic/issues/11

    For example, using Python 3.8 with scikit-learn 0.20.0 you get a couple issues:

    1. Warning - sklearn 0.20.0 uses an version of joblib/cloudpickle that uses imp instead of importlib

    /Users/john/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/externals/joblib/externals/cloudpickle/cloudpickle.py:47: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
      import imp
    

    imp has been deprecated since Python 3.4 but I think the warning maybe only shows on Python 3.8? Relating the sklearn, this is well documented in https://github.com/scikit-learn/scikit-learn/issues/12226 and https://github.com/scikit-learn/scikit-learn/issues/12434 and solved I think in 0.20.1 onwards.

    2. TypeError: an integer is required (got type bytes)

    This is another incompatibility between Python 3.8 and the bundled versions of joblib/cloudpickle in sklearn 0.20.0, similar to this.

    Full traceback:

    In [6]: import sklearn
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-6-b7c74cbf5af0> in <module>
    ----> 1 import sklearn
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/__init__.py in <module>
         63     from . import __check_build
         64     from .base import clone
    ---> 65     from .utils._show_versions import show_versions
         66
         67     __check_build  # avoid flakes unused variable error
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/utils/__init__.py in <module>
         11
         12 from .murmurhash import murmurhash3_32
    ---> 13 from .validation import (as_float_array,
         14                          assert_all_finite,
         15                          check_random_state, column_or_1d, check_array,
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/utils/validation.py in <module>
         25 from ..exceptions import NotFittedError
         26 from ..exceptions import DataConversionWarning
    ---> 27 from ..utils._joblib import Memory
         28 from ..utils._joblib import __version__ as joblib_version
         29
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/utils/_joblib.py in <module>
         16         from joblib import logger
         17 else:
    ---> 18     from ..externals.joblib import __all__   # noqa
         19     from ..externals.joblib import *  # noqa
         20     from ..externals.joblib import __version__  # noqa
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/externals/joblib/__init__.py in <module>
        117 from .numpy_pickle import load
        118 from .compressor import register_compressor
    --> 119 from .parallel import Parallel
        120 from .parallel import delayed
        121 from .parallel import cpu_count
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/externals/joblib/parallel.py in <module>
         30                                  LokyBackend)
         31 from ._compat import _basestring
    ---> 32 from .externals.cloudpickle import dumps, loads
         33 from .externals import loky
         34
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/externals/joblib/externals/cloudpickle/__init__.py in <module>
          1 from __future__ import absolute_import
          2
    ----> 3 from .cloudpickle import *
          4
          5 __version__ = '0.5.6'
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/externals/joblib/externals/cloudpickle/cloudpickle.py in <module>
        149
        150
    --> 151 _cell_set_template_code = _make_cell_set_template_code()
        152
        153
    
    ~/.virtualenvs/sklearn-genetic/lib/python3.8/site-packages/sklearn/externals/joblib/externals/cloudpickle/cloudpickle.py in _make_cell_set_template_code()
        130         )
        131     else:
    --> 132         return types.CodeType(
        133             co.co_argcount,
        134             co.co_kwonlyargcount,
    
    TypeError: an integer is required (got type bytes)
    
    opened by john-sandall 3
  • Two values of data on avg, std, min and max columns

    Two values of data on avg, std, min and max columns

    Hello, thanks for sharing your code.

    I am using it on a dataset to distinguish cancer versus normal patterns from mass-spectrometric data.

    I run the code and I am having a hard time understanding why there are two values of data on avg, std, min and max columns. What does that mean? I am attaching a printscreen to illustrate.

    Thanks.

    WhatsApp Image 2021-08-06 at 12 43 59

    opened by caiocarvalho 2
  • Understand the independent probability

    Understand the independent probability

    Dear Manuel

    Congratulations on your code, and thank you very much for sharing it. I'm using it for geological issues, and I would like to understand the independent crossover probability and also independent mutation probability. I was studying these topics in GA papers, but I didn't find a definition. Can you explain it to me?

    Best regards,

    Michelle.

    opened by MichelleKuroda 2
  • Error when using “Group” cv instances

    Error when using “Group” cv instances

    When Using a "Group" sklearn cross-validation object (in my case GroupShuffleSplit), the following error is raised

    ValueError: The groups parameter should not be None

    This issue might be related to #7646 of sklearn repo.

    I managed to fix it by adding the groups parameter to the fit method, as done in other SearchCV algorithms (e.g. RandomizedSearchCV).

    I can send a pull request if needed.

    opened by aretor 1
  • Unsupported operand type(s)

    Unsupported operand type(s)

    Hello,

    I tried to run the example in the README. Unfortunately, I got the following error:

    multiprocessing.pool.RemoteTraceback:
    """
    Traceback (most recent call last):
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/multiprocessing/pool.py", line 119, in worker
        result = (True, func(*args, **kwds))
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/multiprocessing/pool.py", line 44, in mapstar
        return list(map(*args))
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/site-packages/genetic_selection/gscv.py", line 134, in _evalFunction
        scores_mean = np.mean(scores)
      File "<__array_function__ internals>", line 6, in mean
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/site-packages/numpy/core/fromnumeric.py", line 3373, in mean
        out=out, **kwargs)
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/site-packages/numpy/core/_methods.py", line 160, in _mean
        ret = umr_sum(arr, axis, dtype, out, keepdims)
    TypeError: unsupported operand type(s) for +: 'dict' and 'dict'
    """
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "ga_feature_subset_selection.py", line 147, in <module>
        ga_feature_selection()
      File "ga_feature_subset_selection.py", line 141, in ga_feature_selection
        selector.fit(X, y)
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/site-packages/genetic_selection/gscv.py", line 282, in fit
        return self._fit(X, y)
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/site-packages/genetic_selection/gscv.py", line 346, in _fit
        stats=stats, halloffame=hof, verbose=self.verbose)
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/site-packages/genetic_selection/gscv.py", line 55, in _eaFunction
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/multiprocessing/pool.py", line 266, in map
        return self._map_async(func, iterable, mapstar, chunksize).get()
      File "/home/g3rfx/anaconda3/envs/[redacted]/lib/python3.6/multiprocessing/pool.py", line 644, in get
        raise self._value
    TypeError: unsupported operand type(s) for +: 'dict' and 'dict'
    

    My environment is:

    Ubuntu 20.04.2
    Python 3.6.11
    sklearn-genetic 0.3.0
    scikit-learn 0.24.0
    deap 1.3.1
    

    Thank you in advance!

    opened by g3rfx 1
  • Update to python 3.8

    Update to python 3.8

    Closes https://github.com/manuel-calzolari/sklearn-genetic/issues/13

    Given the complexities of trying to allow this to work on various combinations of Python (<3.8 and 3.8) and sklearn (0.20, 0.22, 0.23) I have tested this against the following combinations:

    • python 3.7 and sklearn 0.20

    • python 3.7 and sklearn 0.22

    • python 3.7 and sklearn 0.23

    • python 3.8 and sklearn 0.22

    • python 3.8 and sklearn 0.23

    opened by john-sandall 1
  • value error for multi-class 4 dimension input

    value error for multi-class 4 dimension input

    Hey I have a dog breed dataset, shape (-1, 100,100,3). I get the following error

    ValueError: Found array with dim 4. Estimator expected <= 2.
    

    My estimator is my_model_2 a 5 layer CNN.

    model = KerasClassifier(build_fn=my_model_2, epochs=10, validation_split = 0.1)
    
    selector = GeneticSelectionCV(estimator=model,
                                  cv=2,
                                  verbose=1,
                                  scoring="accuracy",
                                  max_features=5,
                                  n_population=50,
                                  crossover_proba=0.5,
                                  mutation_proba=0.2,
                                  n_generations=40,
                                  crossover_independent_proba=0.5,
                                  mutation_independent_proba=0.05,
                                  tournament_size=3,
                                  n_gen_no_change=10,
                                  caching=True,
                                  n_jobs=-1)
    

    the selector is default (except cv=2) for testing.

    Is this supported? or do i need to change the shape of my data.

    thank you.

    opened by RoadToML 1
  • How to get the scoring value

    How to get the scoring value

    Hello,

    First thank you for your work which works really great ! I am trying to compare results going with different optimization parameters for my model. I would like to store for each value of this parameter the computed maximum score value obtained with the variable selection. I understood that the feature selection is stored in selector.support_, but where is the score value (ex: accuracy) obtained with this feature selection ?

    Thank you

    opened by ftiguidou 1
  • Adding pool.close and pool.join calls to ensure processes are properly closed.

    Adding pool.close and pool.join calls to ensure processes are properly closed.

    Processes aren't properly closed after the algorithm runs. When running multiple GA executions in a loop, the OS will eventually hit the limit for number of processes. No Bueno.

    This quick fix works and explicitly closes processes after the algorithm has run.

    Adding pool.close and pool.join calls to ensure processes are properly closed.

    opened by jmoore52 1
  • AssertionError: Assigned values have not the same length than fitness weights

    AssertionError: Assigned values have not the same length than fitness weights

    Hi All,

    Has anyone come across the issue described below? I'd appreciate any direction to help resolve this.

    System information OS Platform and Distribution: Windows 11 Home Sklearn-genetic version: 0.5.1 deap version: 1.3.3 Scikit-learn version: 1.1.2 Python version: 3.8.13

    Describe the bug When running my pipeline to tune hyperparameters, this error occurs intermittently.

    AssertionError: Assigned values have not the same length than fitness weights

    I'm running TuneSearchCV (package tune-sklearn) to tune various hyperparameters of my pipeline below in this example, but have also encountered the error frequently when using GASearchCV (package sklearn-genetic-opt, also based on deap) : image

    The following param_grid (generated using BayesSearchCV to show real information instead of the objects) show categorical values for various transformers steps enc__numeric, enc__target, enc__time__cyclicity and dim__fs_wrapper besides numerical parameter ranges for clf__base_estimator.

    {'enc__numeric': Categorical(categories=('passthrough', 
         SmartCorrelatedSelection(selection_method='variance', threshold=0.9), 
         SmartCorrelatedSelection(cv='skf5',
                              estimator=LGBMClassifier(learning_rate=1.0,
                                                       max_depth=8,
                                                       min_child_samples=4,
                                                       min_split_gain=0.0031642299495941877,
                                                       n_jobs=1, num_leaves=59,
                                                       random_state=0, subsample=0.1,
                                                       verbose=-1),
                              scoring=make_scorer(average_precision_score, needs_proba=True, pos_label=1),
                              selection_method='model_performance', threshold=0.9)), prior=None),
     'enc__target': Categorical(categories=(MeanEncoder(ignore_format=True), TargetEncoder(), MEstimateEncoder(), 
         WoEEncoder(ignore_format=True), PRatioEncoder(ignore_format=True), 
         BayesianTargetEncoder(columns=['Symbol', 'CandleType', 'h1CandleType1', 'h2CandleType1'], 
                           prior_weight=3, suffix='')), prior=None),
     'enc__time__cyclicity': Categorical(categories=(CyclicalFeatures(drop_original=True), 
         CycleTransformer(), RepeatingBasisFunction(n_periods=96)), prior=None),
     'dim__fs_wrapper': Categorical(categories=('passthrough', 
         SelectFromModel(estimator=LGBMClassifier(learning_rate=1.0, max_depth=8,
                                              min_child_samples=4,
                                              min_split_gain=0.0031642299495941877,
                                              n_jobs=1, num_leaves=59,
                                              random_state=0, subsample=0.1,
                                              verbose=-1),
                                       importance_getter='feature_importances_'), 
         RFECV(cv=StratifiedKFold(n_splits=5, random_state=0, shuffle=True),
           estimator=LGBMClassifier(learning_rate=1.0, max_depth=8,
                                    min_child_samples=4,
                                    min_split_gain=0.0031642299495941877, n_jobs=1,
                                    num_leaves=59, random_state=0, subsample=0.1,
                                    verbose=-1),
                   importance_getter='feature_importances_', min_features_to_select=10, n_jobs=1,
                   scoring=make_scorer(average_precision_score, needs_proba=True, pos_label=1), step=3), 
         GeneticSelectionCV(caching=True,
                        cv=StratifiedKFold(n_splits=5, random_state=0, shuffle=True),
                        estimator=LGBMClassifier(learning_rate=1.0, max_depth=8,
                                                 min_child_samples=4,
                                                 min_split_gain=0.0031642299495941877,
                                                 n_jobs=1, num_leaves=59,
                                                 random_state=0, subsample=0.1,
                                                 verbose=-1),
                        mutation_proba=0.1, n_gen_no_change=3, n_generations=20, n_population=50,
                        scoring=make_scorer(average_precision_score, needs_proba=True, pos_label=1))), prior=None),
     'clf__base_estimator__eval_metric': Categorical(categories=('logloss', 'aucpr'), prior=None),
     'clf__base_estimator__max_depth': Integer(low=2, high=8, prior='uniform', transform='identity'),
     'clf__base_estimator__min_child_weight': Real(low=1e-05, high=1000, prior='log-uniform', transform='identity'),
     'clf__base_estimator__colsample_bytree': Real(low=0.1, high=1.0, prior='uniform', transform='identity'),
     'clf__base_estimator__subsample': Real(low=0.1, high=0.9999999999999999, prior='uniform', transform='identity'),
     'clf__base_estimator__learning_rate': Real(low=1e-05, high=1, prior='log-uniform', transform='identity'),
     'clf__base_estimator__gamma': Real(low=1e-06, high=1000, prior='log-uniform', transform='identity')}
    

    To Reproduce Steps to reproduce the behavior: <<< Please let me know if you would like more information to reproduce the error >>>

    Expected behavior On occasions when it ran successfully, I got the following results for best_params_ as expected:


    AssertionError Traceback (most recent call last) Input In [130], in <cell line: 7>() 2 start = time() 3 # sv_results_ray = cross_val_clone(ray_pipe, X, y, cv_val[VAL], result_metrics, #scoring=score_metrics, 4 # return_estimator=True, return_train_score=True, 5 # optimise_threshold=True, granularity=THRESHOLD_GRAN 6 # ) ----> 7 sv_results_ray = cross_val_thresh(ray_pipe, X, y, cv_val[VAL], result_metrics, #scoring=score_metrics, 8 return_estimator=True, return_train_score=True, 9 thresh_split=SPLIT, 10 ) 11 end = time()

    Input In [46], in cross_val_thresh(estimator, X, y, cv, result_metrics, return_estimator, return_train_score, thresh_split, *args, **kwargs) 25 time_df.loc[i, 'split'] = i 27 start = time() ---> 28 est_i.fit(X_train, y_train, **kwargs) # **kwargs used to push callbacks to gen_pipe 29 end = time() 30 time_df.loc[i, 'fit_time'] = end - start

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\tune_sklearn\tune_basesearch.py:622, in TuneBaseSearchCV.fit(self, X, y, groups, tune_params, **fit_params) 597 def fit(self, X, y=None, groups=None, tune_params=None, **fit_params): 598 """Run fit with all sets of parameters. 599 600 tune.run is used to perform the fit procedure. (...) 620 621 """ --> 622 return self._fit(X, y, groups, tune_params, **fit_params)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\tune_sklearn\tune_basesearch.py:589, in TuneBaseSearchCV._fit(self, X, y, groups, tune_params, **fit_params) 587 refit_start_time = time.time() 588 if y is not None: --> 589 self.best_estimator.fit(X, y, **fit_params) 590 else: 591 self.best_estimator.fit(X, **fit_params)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\pipeline.py:378, in Pipeline.fit(self, X, y, **fit_params) 352 """Fit the model. 353 354 Fit all the transformers one after the other and transform the (...) 375 Pipeline with fitted steps. 376 """ 377 fit_params_steps = self._check_fit_params(**fit_params) --> 378 Xt = self._fit(X, y, **fit_params_steps) 379 with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)): 380 if self._final_estimator != "passthrough":

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\pipeline.py:336, in Pipeline._fit(self, X, y, **fit_params_steps) 334 cloned_transformer = clone(transformer) 335 # Fit or load from cache the current transformer --> 336 X, fitted_transformer = fit_transform_one_cached( 337 cloned_transformer, 338 X, 339 y, 340 None, 341 message_clsname="Pipeline", 342 message=self._log_message(step_idx), 343 **fit_params_steps[name], 344 ) 345 # Replace the transformer of the step with the fitted 346 # transformer. This is necessary when loading the transformer 347 # from the cache. 348 self.steps[step_idx] = (name, fitted_transformer)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\memory.py:594, in MemorizedFunc.call(self, *args, **kwargs) 593 def call(self, *args, **kwargs): --> 594 return self._cached_call(args, kwargs)[0]

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\memory.py:537, in MemorizedFunc._cached_call(self, args, kwargs, shelving) 534 must_call = True 536 if must_call: --> 537 out, metadata = self.call(*args, **kwargs) 538 if self.mmap_mode is not None: 539 # Memmap the output at the first call to be consistent with 540 # later calls 541 if self._verbose:

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\memory.py:779, in MemorizedFunc.call(self, *args, **kwargs) 777 if self._verbose > 0: 778 print(format_call(self.func, args, kwargs)) --> 779 output = self.func(*args, **kwargs) 780 self.store_backend.dump_item( 781 [func_id, args_id], output, verbose=self._verbose) 783 duration = time.time() - start_time

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\pipeline.py:870, in _fit_transform_one(transformer, X, y, weight, message_clsname, message, **fit_params) 868 with _print_elapsed_time(message_clsname, message): 869 if hasattr(transformer, "fit_transform"): --> 870 res = transformer.fit_transform(X, y, **fit_params) 871 else: 872 res = transformer.fit(X, y, **fit_params).transform(X)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\pipeline.py:1154, in FeatureUnion.fit_transform(self, X, y, **fit_params) 1133 def fit_transform(self, X, y=None, **fit_params): 1134 """Fit all transformers, transform the data and concatenate results. 1135 1136 Parameters (...) 1152 sum of n_components (output dimension) over transformers. 1153 """ -> 1154 results = self._parallel_func(X, y, fit_params, _fit_transform_one) 1155 if not results: 1156 # All transformers are None 1157 return np.zeros((X.shape[0], 0))

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\pipeline.py:1176, in FeatureUnion._parallel_func(self, X, y, fit_params, func) 1173 self._validate_transformer_weights() 1174 transformers = list(self._iter()) -> 1176 return Parallel(n_jobs=self.n_jobs)( 1177 delayed(func)( 1178 transformer, 1179 X, 1180 y, 1181 weight, 1182 message_clsname="FeatureUnion", 1183 message=self._log_message(name, idx, len(transformers)), 1184 **fit_params, 1185 ) 1186 for idx, (name, transformer, weight) in enumerate(transformers, 1) 1187 )

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\parallel.py:1043, in Parallel.call(self, iterable) 1034 try: 1035 # Only set self._iterating to True if at least a batch 1036 # was dispatched. In particular this covers the edge (...) 1040 # was very quick and its callback already dispatched all the 1041 # remaining jobs. 1042 self._iterating = False -> 1043 if self.dispatch_one_batch(iterator): 1044 self._iterating = self._original_iterator is not None 1046 while self.dispatch_one_batch(iterator):

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\parallel.py:861, in Parallel.dispatch_one_batch(self, iterator) 859 return False 860 else: --> 861 self._dispatch(tasks) 862 return True

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\parallel.py:779, in Parallel._dispatch(self, batch) 777 with self._lock: 778 job_idx = len(self._jobs) --> 779 job = self._backend.apply_async(batch, callback=cb) 780 # A job can complete so quickly than its callback is 781 # called before we get here, causing self._jobs to 782 # grow. To ensure correct results ordering, .insert is 783 # used (rather than .append) in the following line 784 self._jobs.insert(job_idx, job)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib_parallel_backends.py:208, in SequentialBackend.apply_async(self, func, callback) 206 def apply_async(self, func, callback=None): 207 """Schedule a func to be run""" --> 208 result = ImmediateResult(func) 209 if callback: 210 callback(result)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib_parallel_backends.py:572, in ImmediateResult.init(self, batch) 569 def init(self, batch): 570 # Don't delay the application, to avoid keeping the input 571 # arguments in memory --> 572 self.results = batch()

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\parallel.py:262, in BatchedCalls.call(self) 258 def call(self): 259 # Set the default nested backend to self._backend but do not set the 260 # change the default number of processes to -1 261 with parallel_backend(self._backend, n_jobs=self._n_jobs): --> 262 return [func(*args, **kwargs) 263 for func, args, kwargs in self.items]

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\joblib\parallel.py:262, in (.0) 258 def call(self): 259 # Set the default nested backend to self._backend but do not set the 260 # change the default number of processes to -1 261 with parallel_backend(self._backend, n_jobs=self._n_jobs): --> 262 return [func(*args, **kwargs) 263 for func, args, kwargs in self.items]

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\utils\fixes.py:117, in _FuncWrapper.call(self, *args, **kwargs) 115 def call(self, *args, **kwargs): 116 with config_context(**self.config): --> 117 return self.function(*args, **kwargs)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\pipeline.py:870, in _fit_transform_one(transformer, X, y, weight, message_clsname, message, **fit_params) 868 with _print_elapsed_time(message_clsname, message): 869 if hasattr(transformer, "fit_transform"): --> 870 res = transformer.fit_transform(X, y, **fit_params) 871 else: 872 res = transformer.fit(X, y, **fit_params).transform(X)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\sklearn\base.py:870, in TransformerMixin.fit_transform(self, X, y, **fit_params) 867 return self.fit(X, **fit_params).transform(X) 868 else: 869 # fit method of arity 2 (supervised transformation) --> 870 return self.fit(X, y, **fit_params).transform(X)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\genetic_selection\gscv.py:279, in GeneticSelectionCV.fit(self, X, y, groups) 262 def fit(self, X, y, groups=None): 263 """Fit the GeneticSelectionCV model and then the underlying estimator on the selected 264 features. 265 (...) 277 instance (e.g., GroupKFold). 278 """ --> 279 return self._fit(X, y, groups)

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\genetic_selection\gscv.py:343, in GeneticSelectionCV._fit(self, X, y, groups) 340 print("Selecting features with genetic algorithm.") 342 with np.printoptions(precision=6, suppress=True, sign=" "): --> 343 _, log = _eaFunction(pop, toolbox, cxpb=self.crossover_proba, 344 mutpb=self.mutation_proba, ngen=self.n_generations, 345 ngen_no_change=self.n_gen_no_change, 346 stats=stats, halloffame=hof, verbose=self.verbose) 347 if self.n_jobs != 1: 348 pool.close()

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\genetic_selection\gscv.py:50, in _eaFunction(population, toolbox, cxpb, mutpb, ngen, ngen_no_change, stats, halloffame, verbose) 48 fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) 49 for ind, fit in zip(invalid_ind, fitnesses): ---> 50 ind.fitness.values = fit 52 if halloffame is None: 53 raise ValueError("The 'halloffame' parameter should not be None.")

    File C:\Anaconda3\envs\skl_py38\lib\site-packages\deap\base.py:188, in Fitness.setValues(self, values) 187 def setValues(self, values): --> 188 assert len(values) == len(self.weights), "Assigned values have not the same length than fitness weights" 189 try: 190 self.wvalues = tuple(map(mul, values, self.weights))

    AssertionError: Assigned values have not the same length than fitness weights

    However, when I exclude dim__fs_wrapper from the pipeline, the error does not occur at all. The purpose of this transformer is to select a feature selection method from amongst 'passthrough' and estimators wrapped in SelectFromModel, RFECV and GeneticSelectionCV and the error seems to originate when GeneticSelectionCV is used for feature selection.

    Additional context

    1. Note that my approach involves packaging all transformers and classifier within the pipeline and running hyperparameter tuning upon all elements of the pipeline rather than on the classifier only. This allows me to select from many different transformers for the same purpose e.g. target encoding, dimension reduction etc., instead of limiting myself to just one.
    opened by RNarayan73 2
  • Assigning n_jobs

    Assigning n_jobs

    Hi,

    below it is the definition of the selector class, n_jobs is by default set to 2, and two screen shot before and after running the code. It appears that n_jobs is running on all available cpus

    class Selector:
        def __init__(self, estimator=None, n_jobs: int = 2):
            self.estimator = estimator
            self.n_jobs = n_jobs
            self.selector_model = None
            self.select_estimator()
    
        def select_estimator(self):
    
            self.selector_model = GeneticSelectionCV(
                self.estimator, cv=5, verbose=0,
                scoring="f1_weighted", max_features=25,
                n_population=50, crossover_proba=0.5,
                mutation_proba=0.2, n_generations=50,
                crossover_independent_proba=0.5,
                mutation_independent_proba=0.04,
                tournament_size=3, n_gen_no_change=10,
                caching=True, n_jobs=self.n_jobs)
    

    image image

    opened by fabiogeraci 1
  • Threads close on AttributeError when run in ipython

    Threads close on AttributeError when run in ipython

    In jupyter notebook, I can run the following without issue:

    estimator = KNeighborsClassifier(n_neighbors=16)
    selector = GeneticSelectionCV(estimator,
                                      cv=10,
                                      verbose=1,
                                      scoring="accuracy",
                                      max_features=3,
                                      n_population=1000,
                                      crossover_proba=0.5,
                                      mutation_proba=0.2,
                                      n_generations=40,
                                      crossover_independent_proba=0.5,
                                      mutation_independent_proba=0.05,
                                      tournament_size=3,
                                      n_gen_no_change=10,
                                      caching=True,
                                      n_jobs=4)
    selector = selector.fit(X, y)
    

    However, as soon as I run it for a second time in the same ipython cell, all of the deap threads raise an exception. I've included the stack trace below.

    Essentially, the above code can't run in a loop in ipython. Are there some threads which are not properly closed due to the interaction between GIL and ipython?

    AttributeError: Can't get attribute 'FitnessMulti' on <module 'deap.creator' from 'D:\\anaconda\\envs\\a\\lib\\site-packages\\deap\\creator.py'>
    AttributeError: Can't get attribute 'FitnessMulti' on <module 'deap.creator' from 'D:\\anaconda\\envs\\a\\lib\\site-packages\\deap\\creator.py'>
    Process SpawnPoolWorker-58:
    Traceback (most recent call last):
      File "D:\anaconda\envs\a\lib\multiprocessing\process.py", line 297, in _bootstrap
        self.run()
      File "D:\anaconda\envs\a\lib\multiprocessing\process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "D:\anaconda\envs\a\lib\multiprocessing\pool.py", line 110, in worker
        task = get()
      File "D:\anaconda\envs\a\lib\multiprocessing\queues.py", line 354, in get
        return _ForkingPickler.loads(res)
    AttributeError: Can't get attribute 'FitnessMulti' on <module 'deap.creator' from 'D:\\anaconda\\envs\\a\\lib\\site-packages\\deap\\creator.py'>
    Process SpawnPoolWorker-60:
    Traceback (most recent call last):
      File "D:\anaconda\envs\a\lib\multiprocessing\process.py", line 297, in _bootstrap
        self.run()
      File "D:\anaconda\envs\a\lib\multiprocessing\process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "D:\anaconda\envs\a\lib\multiprocessing\pool.py", line 110, in worker
        task = get()
      File "D:\anaconda\envs\a\lib\multiprocessing\queues.py", line 354, in get
        return _ForkingPickler.loads(res)
    AttributeError: Can't get attribute 'FitnessMulti' on <module 'deap.creator' from 'D:\\anaconda\\envs\\a\\lib\\site-packages\\deap\\creator.py'>
    
    opened by nightvision04 4
  • Issue with Pipeline and ColumnTransformer

    Issue with Pipeline and ColumnTransformer

    First of, thanks for taking the time to creating this nice implementation a genetic feature selection module for scikit-learn.

    My issue is that whenever I am trying to use it with a Pipeline in which I have a ColumnTransformer (with OneHotEncoder and StandardScaler) I get the following error: "Specifying the columns using strings is only supported for pandas DataFrames.". The error seems to originate from the return self.estimator_.fit(X[:, support_], y) call.

    Any idea what may cause this? And is there a way for me to make my pipeline work with sklearn-genetic?

    opened by nsandau 3
  • long running time

    long running time

    Hi, I am using the library for feature elimination dataset: 400k * 50 all numeric columns meta model :

    RandomForestRegressor(bootstrap=True, criterion='mse',
                                      n_estimators=25,
                                      n_jobs = 8,
                                      verbose=1)
    

    algorithm setup:

    GeneticSelectionCV(model,cv=3, verbose=1, n_population=30,
                                      scoring=scoring,
                                      max_features=40,
                                      caching=True,
                                      n_jobs=8)
    

    I am getting a very long time of execution. It takes 1 or 2 hours of execution and still no result at all. Is it normal? How can I optimize?

    opened by quancore 4
Owner
Manuel Calzolari
Manuel Calzolari
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022